Moulinier Luc, Case David A, Simonson Thomas
Département de Biologie et Génomique Structurales, Institut de Génétique et Biologie Moléculaire et Cellulaire (CNRS), 1 Rue Laurent Fries, 67404 Illkirch-Strasbourg, France.
Acta Crystallogr D Biol Crystallogr. 2003 Dec;59(Pt 12):2094-103. doi: 10.1107/s090744490301833x. Epub 2003 Nov 27.
Structural refinement of proteins involves the minimization of a target function that combines X-ray data with a set of restraints enforcing stereochemistry and packing. Electrostatic interactions are not ordinarily included in the target function, partly because they cannot be calculated reliably without a description of dielectric screening by solvent in the crystal. With the recent development of accurate implicit solvent models to describe this screening, the question arises as to whether a more detailed target function including electrostatic and solvation terms can yield more accurate structures or somewhat different structures of equivalent accuracy. The Generalized Born (GB) model is one such model that describes the solvent as a dielectric continuum, taking into account its heterogeneous distribution within the crystal. It is used here for X-ray refinements of three protein structures with experimental diffraction data to 2.4, 2.9 and 3.2 A, respectively. In each case, a higher resolution structure is available for comparison. The new target function includes stereochemical restraints, van der Waals, Coulomb and solvation interactions, along with the usual X-ray pseudo-energy term, which employs the likelihood estimator of Pannu and Read. Multiple simulated-annealing refinements were performed in torsion-angle space with a conventional target function and the new GB target function, yielding ensembles of refined structures. The new target function yields structures of similar accuracy, as measured by the free R factor, map/model correlations and deviations from the high-resolution structures. About 10% of side-chain conformations differ between the two sets of refinements, in the sense that the two ensembles of conformations do not completely overlap. Over 75% of the differences correspond to surface side chains. For one of the proteins, the GB set has a greater dispersion, indicating that for this case the conventional target function overestimates the true precision. As GB parameterization continues to improve, we expect that this approach will become increasingly useful.
蛋白质的结构优化涉及使一个目标函数最小化,该目标函数将X射线数据与一组强制立体化学和堆积的约束条件相结合。静电相互作用通常不包含在目标函数中,部分原因是在没有对晶体中溶剂的介电屏蔽进行描述的情况下,无法可靠地计算它们。随着用于描述这种屏蔽的精确隐式溶剂模型的最新发展,出现了一个问题,即包含静电和溶剂化项的更详细的目标函数是否能产生更准确的结构或同等精度的略有不同的结构。广义玻恩(GB)模型就是这样一种模型,它将溶剂描述为介电连续体,同时考虑其在晶体内的非均匀分布。本文利用该模型分别对三个蛋白质结构进行X射线精修,实验衍射数据分辨率分别为2.4 Å、2.9 Å和3.2 Å。在每种情况下,都有更高分辨率的结构可供比较。新的目标函数包括立体化学约束、范德华力、库仑力和溶剂化相互作用,以及通常的X射线伪能量项,该项采用了潘努和里德的似然估计器。在扭转角空间中,使用传统目标函数和新的GB目标函数进行了多次模拟退火精修,得到了精修结构的集合。通过自由R因子、图谱/模型相关性以及与高分辨率结构的偏差来衡量,新的目标函数产生的结构具有相似的精度。两组精修结构之间约10%的侧链构象不同,即这两组构象集合并不完全重叠。超过75%的差异对应于表面侧链。对于其中一种蛋白质,GB集合具有更大的离散度,这表明在这种情况下,传统目标函数高估了真实精度。随着GB参数化的不断改进,我们预计这种方法将变得越来越有用。