Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA.
Biophys J. 2010 Jun 16;98(12):2984-92. doi: 10.1016/j.bpj.2010.02.057.
We recently developed a polarizable atomic multipole refinement method assisted by the AMOEBA force field for macromolecular crystallography. Compared to standard refinement procedures, the method uses a more rigorous treatment of x-ray scattering and electrostatics that can significantly improve the resultant information contained in an atomic model. We applied this method to high-resolution lysozyme and trypsin data sets, and validated its utility for precisely describing biomolecular electron density, as indicated by a 0.4-0.6% decrease in the R- and R(free)-values, and a corresponding decrease in the relative energy of 0.4-0.8 Kcal/mol/residue. The re-refinements illustrate the ability of force-field electrostatics to orient water networks and catalytically relevant hydrogens, which can be used to make predictions regarding active site function, activity, and protein-ligand interaction energies. Re-refinement of a DNA crystal structure generates the zigzag spine pattern of hydrogen bonding in the minor groove without manual intervention. The polarizable atomic multipole electrostatics model implemented in the AMOEBA force field is applicable and informative for crystal structures solved at any resolution.
我们最近开发了一种基于 AMOEBA 力场的可极化原子多极精修方法,用于大分子晶体学。与标准精修程序相比,该方法对 X 射线散射和静电作用采用了更严格的处理方式,可显著提高原子模型中包含的信息。我们将该方法应用于高分辨率溶菌酶和胰蛋白酶数据集,并验证了其精确描述生物分子电子密度的能力,表现在 R-和 R(free)-值分别降低了 0.4-0.6%,以及相应的残基相对能量降低了 0.4-0.8 Kcal/mol。重新精修说明了力场静电学能够定向水分子网络和催化相关的氢键,可用于预测活性位点功能、活性和蛋白-配体相互作用能。DNA 晶体结构的重新精修无需手动干预即可生成小沟中氢键的锯齿状螺旋模式。在任何分辨率下解决晶体结构都适用且提供信息的是 AMOEBA 力场中实现的可极化原子多极静电模型。