Suppr超能文献

极化原子多极 X 射线精修:水合几何结构及其在大分子中的应用。

Polarizable atomic multipole x-ray refinement: hydration geometry and application to macromolecules.

机构信息

Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA.

出版信息

Biophys J. 2010 Jun 16;98(12):2984-92. doi: 10.1016/j.bpj.2010.02.057.

Abstract

We recently developed a polarizable atomic multipole refinement method assisted by the AMOEBA force field for macromolecular crystallography. Compared to standard refinement procedures, the method uses a more rigorous treatment of x-ray scattering and electrostatics that can significantly improve the resultant information contained in an atomic model. We applied this method to high-resolution lysozyme and trypsin data sets, and validated its utility for precisely describing biomolecular electron density, as indicated by a 0.4-0.6% decrease in the R- and R(free)-values, and a corresponding decrease in the relative energy of 0.4-0.8 Kcal/mol/residue. The re-refinements illustrate the ability of force-field electrostatics to orient water networks and catalytically relevant hydrogens, which can be used to make predictions regarding active site function, activity, and protein-ligand interaction energies. Re-refinement of a DNA crystal structure generates the zigzag spine pattern of hydrogen bonding in the minor groove without manual intervention. The polarizable atomic multipole electrostatics model implemented in the AMOEBA force field is applicable and informative for crystal structures solved at any resolution.

摘要

我们最近开发了一种基于 AMOEBA 力场的可极化原子多极精修方法,用于大分子晶体学。与标准精修程序相比,该方法对 X 射线散射和静电作用采用了更严格的处理方式,可显著提高原子模型中包含的信息。我们将该方法应用于高分辨率溶菌酶和胰蛋白酶数据集,并验证了其精确描述生物分子电子密度的能力,表现在 R-和 R(free)-值分别降低了 0.4-0.6%,以及相应的残基相对能量降低了 0.4-0.8 Kcal/mol。重新精修说明了力场静电学能够定向水分子网络和催化相关的氢键,可用于预测活性位点功能、活性和蛋白-配体相互作用能。DNA 晶体结构的重新精修无需手动干预即可生成小沟中氢键的锯齿状螺旋模式。在任何分辨率下解决晶体结构都适用且提供信息的是 AMOEBA 力场中实现的可极化原子多极静电模型。

相似文献

1
Polarizable atomic multipole x-ray refinement: hydration geometry and application to macromolecules.
Biophys J. 2010 Jun 16;98(12):2984-92. doi: 10.1016/j.bpj.2010.02.057.
2
Polarizable Atomic Multipole X-Ray Refinement: Particle Mesh Ewald Electrostatics for Macromolecular Crystals.
J Chem Theory Comput. 2011 Apr 12;7(4):1141-56. doi: 10.1021/ct100506d. Epub 2011 Mar 9.
4
Polarizable atomic multipole X-ray refinement: application to peptide crystals.
Acta Crystallogr D Biol Crystallogr. 2009 Sep;65(Pt 9):952-65. doi: 10.1107/S0907444909022707. Epub 2009 Aug 14.
5
Polarizable atomic multipole X-ray refinement: weighting schemes for macromolecular diffraction.
Acta Crystallogr D Biol Crystallogr. 2011 Nov;67(Pt 11):957-65. doi: 10.1107/S0907444911039060. Epub 2011 Oct 19.
6
High-resolution crystal structures of protein helices reconciled with three-centered hydrogen bonds and multipole electrostatics.
PLoS One. 2015 Apr 20;10(4):e0123146. doi: 10.1371/journal.pone.0123146. eCollection 2015.
8
Accurate Host-Guest Binding Free Energies Using the AMOEBA Polarizable Force Field.
J Chem Inf Model. 2023 May 8;63(9):2769-2782. doi: 10.1021/acs.jcim.3c00155. Epub 2023 Apr 19.
9
Multipole electrostatics in hydration free energy calculations.
J Comput Chem. 2011 Apr 15;32(5):967-77. doi: 10.1002/jcc.21681. Epub 2010 Oct 5.

引用本文的文献

1
Crystal Polymorph Search in the Ensemble via a Deposition/Sublimation Alchemical Path.
Cryst Growth Des. 2024 Mar 9;24(8):3205-3217. doi: 10.1021/acs.cgd.3c01358. eCollection 2024 Apr 17.
2
A generalized Kirkwood implicit solvent for the polarizable AMOEBA protein model.
J Chem Phys. 2023 Aug 7;159(5). doi: 10.1063/5.0158914.
3
Modeling a unit cell: crystallographic refinement procedure using the biomolecular MD simulation platform .
IUCrJ. 2021 Dec 16;9(Pt 1):114-133. doi: 10.1107/S2052252521011891. eCollection 2022 Jan 1.
4
Structural Insights into Hearing Loss Genetics from Polarizable Protein Repacking.
Biophys J. 2019 Aug 6;117(3):602-612. doi: 10.1016/j.bpj.2019.06.030. Epub 2019 Jul 3.
7
Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale.
PLoS Comput Biol. 2016 Jun 23;12(6):e1004728. doi: 10.1371/journal.pcbi.1004728. eCollection 2016 Jun.
9
High-resolution crystal structures of protein helices reconciled with three-centered hydrogen bonds and multipole electrostatics.
PLoS One. 2015 Apr 20;10(4):e0123146. doi: 10.1371/journal.pone.0123146. eCollection 2015.
10
Classical electrostatics for biomolecular simulations.
Chem Rev. 2014 Jan 8;114(1):779-814. doi: 10.1021/cr300461d. Epub 2013 Aug 27.

本文引用的文献

1
Polarizable Atomic Multipole Solutes in a Generalized Kirkwood Continuum.
J Chem Theory Comput. 2007 Nov;3(6):2083-97. doi: 10.1021/ct7001336.
2
Polarizable atomic multipole X-ray refinement: application to peptide crystals.
Acta Crystallogr D Biol Crystallogr. 2009 Sep;65(Pt 9):952-65. doi: 10.1107/S0907444909022707. Epub 2009 Aug 14.
3
Hydrogen bond dynamics in the active site of photoactive yellow protein.
Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9232-7. doi: 10.1073/pnas.0900168106. Epub 2009 May 26.
4
Triclinic lysozyme at 0.65 A resolution.
Acta Crystallogr D Biol Crystallogr. 2007 Dec;63(Pt 12):1254-68. doi: 10.1107/S0907444907054224. Epub 2007 Nov 16.
6
The determination of protonation states in proteins.
Acta Crystallogr D Biol Crystallogr. 2007 Aug;63(Pt 8):906-22. doi: 10.1107/S0907444907029976. Epub 2007 Jul 17.
7
PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W522-5. doi: 10.1093/nar/gkm276. Epub 2007 May 8.
8
Polarizable atomic multipole solutes in a Poisson-Boltzmann continuum.
J Chem Phys. 2007 Mar 28;126(12):124114. doi: 10.1063/1.2714528.
10
Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential.
J Phys Chem B. 2006 Sep 21;110(37):18553-9. doi: 10.1021/jp062230r.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验