Gohlke Holger, Case David A
Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, USA.
J Comput Chem. 2004 Jan 30;25(2):238-50. doi: 10.1002/jcc.10379.
Estimating protein-protein interaction energies is a very challenging task for current simulation protocols. Here, absolute binding free energies are reported for the complex H-Ras/C-Raf1 using the MM-PB(GB)SA approach, testing the internal consistency and model dependence of the results. Averaging gas-phase energies (MM), solvation free energies as determined by Generalized Born models (GB/SA), and entropic contributions calculated by normal mode analysis for snapshots obtained from 10 ns explicit-solvent molecular dynamics in general results in an overestimation of the binding affinity when a solvent-accessible surface area-dependent model is used to estimate the nonpolar solvation contribution. Applying the sum of a cavity solvation free energy and explicitly modeled solute-solvent van der Waals interaction energies instead provides less negative estimates for the nonpolar solvation contribution. When the polar contribution to the solvation free energy is determined by solving the Poisson-Boltzmann equation (PB) instead, the calculated binding affinity strongly depends on the atomic radii set chosen. For three GB models investigated, different absolute deviations from PB energies were found for the unbound proteins and the complex. As an alternative to normal-mode calculations, quasiharmonic analyses have been performed to estimate entropic contributions due to changes of solute flexibility upon binding. However, such entropy estimates do not converge after 10 ns of simulation time, indicating that sampling issues may limit the applicability of this approach. Finally, binding free energies estimated from snapshots of the unbound proteins extracted from the complex trajectory result in an underestimate of binding affinity. This points to the need to exercise caution in applying the computationally cheaper "one-trajectory-alternative" to systems where there may be significant changes in flexibility and structure due to binding. The best estimate for the binding free energy of Ras-Raf obtained in this study of -8.3 kcal mol(-1) is in good agreement with the experimental result of -9.6 kcal mol(-1), however, further probing the transferability of the applied protocol that led to this result is necessary.
对于当前的模拟协议而言,估算蛋白质 - 蛋白质相互作用能是一项极具挑战性的任务。在此,我们使用MM - PB(GB)SA方法报告了复合物H - Ras/C - Raf1的绝对结合自由能,测试了结果的内部一致性和模型依赖性。当使用基于溶剂可及表面积的模型来估算非极性溶剂化贡献时,对从10 ns显式溶剂分子动力学获得的快照进行气相能量(MM)平均、由广义玻恩模型(GB/SA)确定的溶剂化自由能以及通过简正模式分析计算的熵贡献,通常会导致结合亲和力的高估。相反,应用空穴溶剂化自由能与明确建模的溶质 - 溶剂范德华相互作用能之和,可为非极性溶剂化贡献提供较小的负值估计。当通过求解泊松 - 玻尔兹曼方程(PB)来确定溶剂化自由能的极性贡献时,计算得到的结合亲和力强烈依赖于所选择的原子半径集。对于所研究的三种GB模型,未结合蛋白质和复合物与PB能量的绝对偏差不同。作为简正模式计算的替代方法,已经进行了准谐波分析以估算由于结合时溶质灵活性变化而产生的熵贡献。然而,在10 ns的模拟时间后,这种熵估计并未收敛,这表明采样问题可能限制了该方法的适用性。最后,从复合物轨迹中提取的未结合蛋白质的快照估计的结合自由能导致结合亲和力的低估。这表明在将计算成本较低的“单轨迹替代方法”应用于由于结合可能导致灵活性和结构发生重大变化的系统时需要谨慎。在本研究中获得的Ras - Raf结合自由能的最佳估计值为 - 8.3 kcal mol⁻¹,与实验结果 - 9.6 kcal mol⁻¹ 吻合良好,然而,有必要进一步探究导致该结果的应用协议的可转移性。