Suppr超能文献

基于溶质电子密度以及由体介电常数和原子表面张力定义的溶剂连续介质模型的通用溶剂化模型。

Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.

作者信息

Marenich Aleksandr V, Cramer Christopher J, Truhlar Donald G

机构信息

Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA.

出版信息

J Phys Chem B. 2009 May 7;113(18):6378-96. doi: 10.1021/jp810292n.

Abstract

We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the "D" stands for "density" to denote that the full solute electron density is used without defining partial atomic charges. "Continuum" denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute-solvent boundary. SMD is a universal solvation model, where "universal" denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonhomogeneous Poisson equation for electrostatics in terms of the integral-equation-formalism polarizable continuum model (IEF-PCM). The cavities for the bulk electrostatic calculation are defined by superpositions of nuclear-centered spheres. The second component is called the cavity-dispersion-solvent-structure term and is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas of the individual atoms of the solute. The SMD model has been parametrized with a training set of 2821 solvation data including 112 aqueous ionic solvation free energies, 220 solvation free energies for 166 ions in acetonitrile, methanol, and dimethyl sulfoxide, 2346 solvation free energies for 318 neutral solutes in 91 solvents (90 nonaqueous organic solvents and water), and 143 transfer free energies for 93 neutral solutes between water and 15 organic solvents. The elements present in the solutes are H, C, N, O, F, Si, P, S, Cl, and Br. The SMD model employs a single set of parameters (intrinsic atomic Coulomb radii and atomic surface tension coefficients) optimized over six electronic structure methods: M05-2X/MIDI!6D, M05-2X/6-31G, M05-2X/6-31+G, M05-2X/cc-pVTZ, B3LYP/6-31G, and HF/6-31G. Although the SMD model has been parametrized using the IEF-PCM protocol for bulk electrostatics, it may also be employed with other algorithms for solving the nonhomogeneous Poisson equation for continuum solvation calculations in which the solute is represented by its electron density in real space. This includes, for example, the conductor-like screening algorithm. With the 6-31G basis set, the SMD model achieves mean unsigned errors of 0.6-1.0 kcal/mol in the solvation free energies of tested neutrals and mean unsigned errors of 4 kcal/mol on average for ions with either Gaussian03 or GAMESS.

摘要

我们提出了一种新的连续介质溶剂化模型,该模型基于溶质分子的量子力学电荷密度与溶剂的连续介质描述相互作用。该模型称为SMD,其中“D”代表“密度”,表示使用完整的溶质电子密度,而不定义部分原子电荷。“连续介质”表示溶剂不是明确表示的,而是作为溶质 - 溶剂边界处具有表面张力的介电介质。SMD是一种通用溶剂化模型,其中“通用”表示它适用于任何溶剂或液体介质中的任何带电或不带电溶质,前提是已知一些关键描述符(特别是介电常数、折射率、本体表面张力以及酸度和碱度参数)。该模型将可观测的溶剂化自由能分为两个主要成分。第一个成分是本体静电贡献,它来自自洽反应场处理,该处理涉及根据积分方程形式的可极化连续介质模型(IEF - PCM)求解非均匀泊松静电方程。用于本体静电计算的空穴由以原子核为中心的球体叠加定义。第二个成分称为空穴 - 色散 - 溶剂 - 结构项,是溶质与第一溶剂化层中溶剂分子之间短程相互作用产生的贡献。此贡献是与溶质各个原子的溶剂可及表面积成比例的项的总和(比例常数取决于几何形状,称为原子表面张力)。SMD模型已通过包含2821个溶剂化数据的训练集进行参数化,其中包括112个水性离子溶剂化自由能、220个乙腈、甲醇和二甲亚砜中166种离子的溶剂化自由能、91种溶剂(90种非水有机溶剂和水)中318种中性溶质的2346个溶剂化自由能以及93种中性溶质在水和15种有机溶剂之间的143个转移自由能。溶质中存在的元素有H、C、N、O、F、Si、P、S、Cl和Br。SMD模型采用了一组在六种电子结构方法上优化的参数(本征原子库仑半径和原子表面张力系数):M05 - 2X/MIDI!6D、M05 - 2X/6 - 31G、M05 - 2X/6 - 31 + G、M05 - 2X/cc - pVTZ、B3LYP/6 - 31G和HF/6 - 31G。尽管SMD模型已使用IEF - PCM协议对本体静电进行参数化,但它也可与其他用于求解非均匀泊松方程以进行连续介质溶剂化计算的算法一起使用,其中溶质在实空间中由其电子密度表示。这包括例如导体类屏蔽算法。使用6 - 31G基组时,对于测试的中性物质,SMD模型在溶剂化自由能方面的平均绝对误差为0.6 - 1.0 kcal/mol,对于离子,使用Gaussian03或GAMESS时平均绝对误差平均为4 kcal/mol。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验