Suppr超能文献

极性基团的疏水倾向是分子识别中的主要力量。

Hydrophobic tendencies of polar groups as a major force in molecular recognition.

作者信息

Chalikian Tigran V

机构信息

Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 19 Russell St., Toronto, Ontario M5S 2S2, Canada.

出版信息

Biopolymers. 2003 Dec;70(4):492-6. doi: 10.1002/bip.10538.

Abstract

Proteins and nucleic acids are able to adopt their native conformation and perform their biological role only in the presence of water with which they actively interact in a mutually modifying way. Traditionally, hydrophobic effect has been considered to be the major factor stabilizing biopolymeric structures. However, solvent reorganization around polar groups is an event thermodynamically more unfavorable than solvent reorganization around nonpolar groups. Consequently, burial of polar groups with formation of complementary solute-solute hydrogen bonds out of contact with water is an energetically favorable process that also provides a major force driving macromolecular association and folding. In contrast to nonpolar groups, polar groups may form their complementary intra- or intersolute hydrogen bonds out of contact with water only provided that an appropriate solute structure has been formed with properly positioned hydrogen bond donors and acceptors. Formation of such structures is disfavored entropically and may not be possible due to steric reasons. However, the interior of a folded protein, alpha-helices and beta-sheets, double helical nucleic acid structures, and protein-ligand interfaces all provide rigid matrices where polar groups may form their complementary hydrogen bonds. For these structures, the inward drive of polar groups represents a considerable stabilizing factor.

摘要

蛋白质和核酸只有在有水存在的情况下才能呈现其天然构象并发挥生物学作用,它们与水以相互修饰的方式积极相互作用。传统上,疏水作用被认为是稳定生物聚合物结构的主要因素。然而,极性基团周围的溶剂重组在热力学上比非极性基团周围的溶剂重组更不利。因此,极性基团通过形成互补的溶质-溶质氢键而被掩埋,使其与水不接触,这是一个能量上有利的过程,同时也提供了驱动大分子缔合和折叠的主要力量。与非极性基团不同,极性基团只有在形成了具有适当定位的氢键供体和受体的合适溶质结构时,才可能在与水不接触的情况下形成其互补的溶质内或溶质间氢键。这种结构的形成在熵上是不利的,并且由于空间位阻原因可能无法实现。然而,折叠蛋白的内部、α-螺旋和β-折叠、双螺旋核酸结构以及蛋白质-配体界面都提供了刚性基质,极性基团可以在其中形成其互补的氢键。对于这些结构,极性基团的向内驱动力是一个相当大的稳定因素。

相似文献

1
Hydrophobic tendencies of polar groups as a major force in molecular recognition.
Biopolymers. 2003 Dec;70(4):492-6. doi: 10.1002/bip.10538.
2
Statistical and molecular dynamics studies of buried waters in globular proteins.
Proteins. 2005 Aug 15;60(3):450-63. doi: 10.1002/prot.20511.
3
Protein-lipid interactions and the role of water.
Horiz Biochem Biophys. 1978;5:241-80.
4
Do water molecules mediate protein-DNA recognition?
J Mol Biol. 2001 Nov 30;314(3):619-32. doi: 10.1006/jmbi.2001.5154.
5
What factor drives the fibrillogenic association of beta-sheets?
FEBS Lett. 2005 Dec 5;579(29):6635-40. doi: 10.1016/j.febslet.2005.10.058. Epub 2005 Nov 9.
6
Protein folding in the absence of the solvent ordering contribution to the hydrophobic interaction.
J Mol Biol. 1993 Jan 20;229(2):502-11. doi: 10.1006/jmbi.1993.1049.
7
A new angle on heat capacity changes in hydrophobic solvation.
J Am Chem Soc. 2003 Aug 13;125(32):9853-60. doi: 10.1021/ja029796n.
8
Origins of pressure-induced protein transitions.
J Mol Biol. 2009 Dec 18;394(5):834-42. doi: 10.1016/j.jmb.2009.10.020. Epub 2009 Oct 24.
9
Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
J Phys Chem B. 2009 Jun 25;113(25):8717-24. doi: 10.1021/jp901196n.

引用本文的文献

1
Some thermodynamic effects of varying nonpolar surfaces in protein-ligand interactions.
Eur J Med Chem. 2020 Dec 15;208:112771. doi: 10.1016/j.ejmech.2020.112771. Epub 2020 Aug 23.
3
Binding-linked protonation of a DNA minor-groove agent.
Biophys J. 2006 Feb 15;90(4):1319-28. doi: 10.1529/biophysj.105.071381. Epub 2005 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验