Suppr超能文献

统计势在基于低分辨率从头算模型的蛋白质结构优化中的应用。

Application of statistical potentials to protein structure refinement from low resolution ab initio models.

作者信息

Lu Hui, Skolnick Jeffrey

机构信息

Laboratory of Computational Genomics, Donald Danforth Plant Science Center, 975 N Warson St., St. Louis, MO 63132, USA.

出版信息

Biopolymers. 2003 Dec;70(4):575-84. doi: 10.1002/bip.10537.

Abstract

Recently ab initio protein structure prediction methods have advanced sufficiently so that they often assemble the correct low resolution structure of the protein. To enhance the speed of conformational search, many ab initio prediction programs adopt a reduced protein representation. However, for drug design purposes, better quality structures are probably needed. To achieve this refinement, it is natural to use a more detailed heavy atom representation. Here, as opposed to costly implicit or explicit solvent molecular dynamics simulations, knowledge-based heavy atom pair potentials were employed. By way of illustration, we tried to improve the quality of the predicted structures obtained from the ab initio prediction program TOUCHSTONE by three methods: local constraint refinement, reduced predicted tertiary contact refinement, and statistical pair potential guided molecular dynamics. Sixty-seven predicted structures from 30 small proteins (less than 150 residues in length) representing different structural classes (alpha, beta, alpha;/beta) were examined. In 33 cases, the root mean square deviation (RMSD) from native structures improved by more than 0.3 A; in 19 cases, the improvement was more than 0.5 A, and sometimes as large as 1 A. In only seven (four) cases did the refinement procedure increase the RMSD by more than 0.3 (0.5) A. For the remaining structures, the refinement procedures changed the structures by less than 0.3 A. While modest, the performance of the current refinement methods is better than the published refinement results obtained using standard molecular dynamics.

摘要

最近,从头算蛋白质结构预测方法已经取得了长足的进步,以至于它们常常能够组装出正确的低分辨率蛋白质结构。为了提高构象搜索的速度,许多从头算预测程序采用了简化的蛋白质表示方法。然而,出于药物设计的目的,可能需要质量更高的结构。为了实现这种优化,使用更详细的重原子表示方法是很自然的。在这里,与代价高昂的隐式或显式溶剂分子动力学模拟不同,采用了基于知识的重原子对势。作为例证,我们尝试通过三种方法提高从从头算预测程序TOUCHSTONE获得的预测结构的质量:局部约束优化、简化预测三级接触优化和统计对势引导的分子动力学。对代表不同结构类型(α、β、α/β)的30个小蛋白质(长度小于150个残基)的67个预测结构进行了研究。在33个案例中,与天然结构的均方根偏差(RMSD)改善超过0.3 Å;在19个案例中,改善超过0.5 Å,有时高达1 Å。只有7(4)个案例中,优化程序使RMSD增加超过0.3(0.5)Å。对于其余结构,优化程序使结构变化小于0.3 Å。虽然效果不显著,但当前优化方法的性能优于使用标准分子动力学获得的已发表的优化结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验