Hill David W, Alain Catherine, Kennedy Michael D
Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton 76203-0769, USA.
Med Sci Sports Exerc. 2003 Dec;35(12):2098-105. doi: 10.1249/01.MSS.0000099111.78949.0E.
Several mathematical models describe the relationship between velocity and time to fatigue.
The purposes of this study were to evaluate different critical velocity (V(critical)) models applied to rowing ergometry and to investigate prediction of performance time in a 2000-m race based on results from shorter trials.
Sixteen men performed seven rowing ergometer tests. Velocity and time to fatigue data from the 200-m (approximately 0.5 min) to 1200-m (approximately 3 min) trials and from the 200-m to 2000-m (approximately 6.5 min) trials were fit to a two-parameter hyperbolic model, a three-parameter hyperbolic model, and a three-parameter exponential model.
Including data from the 2000-m trial generally resulted in higher R2 and smaller SEE. V(critical) from the three versions of the two-parameter model were 4.71 +/- 0.28 m x s(-1), 4.80 +/- 0.27 m x s(-1), and 5.04 +/- 0.24 m x s(-1) (P < 0.001). The two three-parameter models had high R2 (0.991 and 0.990, respectively) and generated parameter estimates that appeared reasonable. Time for a 2000-m race was predicted better using the two-parameter model (r > 0.974) than using the three-parameter models (r = 0.820-0.870).
It is necessary to include the relatively long 2000-m predicting trial to describe accurately the velocity-time relationship in rowing. The two-parameter model may be useful in predicting time for a 2000-m race but is not otherwise appropriate for modeling when predicting trials of <1 min duration are included. Choice of model and duration of trials must be considered when using mathematical modeling to derive V(critical) and other parameters in rowing.
有几种数学模型描述了速度与疲劳时间之间的关系。
本研究的目的是评估应用于划船测力计的不同临界速度(V(临界))模型,并基于较短试验的结果研究2000米比赛中成绩时间的预测。
16名男性进行了七次划船测力计测试。将200米(约0.5分钟)至1200米(约3分钟)试验以及200米至2000米(约6.5分钟)试验的速度和疲劳时间数据拟合到双参数双曲线模型、三参数双曲线模型和三参数指数模型。
纳入2000米试验的数据通常会使R2更高且SEE更小。双参数模型三个版本的V(临界)分别为4.71±0.28米×秒-1、4.80±0.27米×秒-1和5.04±0.24米×秒-1(P<0.001)。两个三参数模型具有较高的R2(分别为0.991和0.990),并生成了看似合理的参数估计值。使用双参数模型(r>0.974)比使用三参数模型(r = 0.820 - 0.870)能更好地预测2000米比赛的时间。
有必要纳入相对较长的2000米预测试验,以准确描述划船中的速度 - 时间关系。双参数模型可能有助于预测2000米比赛的时间,但在纳入持续时间<1分钟的预测试验时,否则不适用于建模。在使用数学建模推导划船中的V(临界)和其他参数时,必须考虑模型的选择和试验的持续时间。