Ketcham Caroline J, Dounskaia Natalia V, Stelmach George E
Motor Control Laboratory, Arizona State University, Tempe, AZ 85287-0404, USA.
Prog Brain Res. 2004;143:207-18. doi: 10.1016/S0079-6123(03)43021-5.
The underlying mechanisms of the neural control of movement have long been explored, with a focus primarily on central control aspects and often overlooking the intrinsic mechanical properties of the motor system. To fully understand the control and regulation of movements, the biomechanical properties of the moving subject, specifically interactive torques, must be considered in the design, evaluation, and interpretation of empirical data. We first discuss the difficulty of extrapolating information from a wide variety of tasks due to their varying inherent task constraints. Examples are subsequently given where a biomechanical perspective provides a more informative interpretation of existing data. Finally, we focus on research examining the role of interactive torques with a discussion of how discoordinated movements may be explained by an inability to modulate interactive torques. Inclusion of biomechanical considerations in motor control research is a step toward incorporating multilevel methodologies and interpretations into the field, and providing a more comprehensive understanding of the neural control and regulation of movement.
运动的神经控制的潜在机制长期以来一直受到探索,主要侧重于中枢控制方面,并且常常忽视运动系统的内在机械特性。为了全面理解运动的控制和调节,在实证数据的设计、评估和解释中,必须考虑运动主体的生物力学特性,特别是交互扭矩。我们首先讨论由于各种任务固有的不同约束而难以从这些任务中推断信息的问题。随后给出了一些例子,说明从生物力学角度如何能对现有数据提供更丰富的解释。最后,我们着重于研究交互扭矩的作用,并讨论不协调运动如何可能由无法调节交互扭矩来解释。将生物力学因素纳入运动控制研究是朝着将多层次方法和解释纳入该领域迈出的一步,并且能更全面地理解运动的神经控制和调节。