Becker Albert J, Chen Jian, Zien Alexander, Sochivko Dmitry, Normann Sabine, Schramm Johannes, Elger Christian E, Wiestler Otmar D, Blümcke Ingmar
Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud Strasse 25, D-53105 Bonn, Germany.
Eur J Neurosci. 2003 Nov;18(10):2792-802. doi: 10.1111/j.1460-9568.2003.02993.x.
Epileptic activity evokes profound alterations of hippocampal organization and function. Genomic responses may reflect immediate consequences of excitatory stimulation as well as sustained molecular processes related to neuronal plasticity and structural remodeling. Using oligonucleotide microarrays with 8799 sequences, we determined subregional gene expression profiles in rats subjected to pilocarpine-induced epilepsy (U34A arrays, Affymetrix, Santa Clara, CA, USA; P < 0.05, twofold change, n = 3 per stage). Patterns of gene expression corresponded to distinct stages of epilepsy development. The highest number of differentially expressed genes (dentate gyrus, approx. 400 genes and CA1, approx. 700 genes) was observed 3 days after status epilepticus. The majority of up-regulated genes was associated with mechanisms of cellular stress and injury - 14 days after status epilepticus, numerous transcription factors and genes linked to cytoskeletal and synaptic reorganization were differentially expressed and, in the stage of chronic spontaneous seizures, distinct changes were observed in the transcription of genes involved in various neurotransmission pathways and between animals with low vs. high seizure frequency. A number of genes (n = 18) differentially expressed during the chronic epileptic stage showed corresponding expression patterns in hippocampal subfields of patients with pharmacoresistant temporal lobe epilepsy (n = 5 temporal lobe epilepsy patients; U133A microarrays, Affymetrix; covering 22284 human sequences). These data provide novel insights into the molecular mechanisms of epileptogenesis and seizure-associated cellular and structural remodeling of the hippocampus.
癫痫活动会引发海马体组织和功能的深刻改变。基因组反应可能反映出兴奋性刺激的即时后果以及与神经元可塑性和结构重塑相关的持续分子过程。我们使用含有8799个序列的寡核苷酸微阵列,确定了匹罗卡品诱导癫痫大鼠的亚区域基因表达谱(U34A阵列,Affymetrix公司,美国加利福尼亚州圣克拉拉;P < 0.05,两倍变化,每个阶段n = 3)。基因表达模式与癫痫发展的不同阶段相对应。癫痫持续状态3天后观察到差异表达基因数量最多(齿状回约400个基因,CA1约700个基因)。癫痫持续状态14天后,大多数上调基因与细胞应激和损伤机制相关,许多与细胞骨架和突触重组相关的转录因子和基因差异表达,在慢性自发性癫痫发作阶段,观察到参与各种神经传递途径的基因转录以及癫痫发作频率低与高的动物之间存在明显变化。在慢性癫痫阶段差异表达的一些基因(n = 18)在药物难治性颞叶癫痫患者(n = 5例颞叶癫痫患者;U133A微阵列,Affymetrix;涵盖22284个人类序列)的海马亚区呈现出相应的表达模式。这些数据为癫痫发生以及癫痫发作相关的海马体细胞和结构重塑的分子机制提供了新的见解。