Donahoe Patricia K, Clarke Trent, Teixeira Jose, Maheswaran Shyamala, MacLaughlin David T
Pediatric Surgical Research Laboratories, Massachusetts General Hospital and Harvard Medical School, Warren 11, 55 Fruit Street, Boston, MA 02114, USA.
Mol Cell Endocrinol. 2003 Dec 15;211(1-2):37-42. doi: 10.1016/j.mce.2003.09.009.
It is almost 60 years since Prof. Alfred Jost reported the seminal observations regarding Müllerian inhibiting substance (MIS). His experiments clearly showed that a testicular product other than testosterone, a Müllerian inhibitor, was responsible for Müllerian duct regression. Twenty-five years later Dr. Picon established an organ culture assay which paved the way for the initial studies into the biochemistry and biology of Müllerian inhibiting substance, also known as Anti-Müllerian hormone (AMH), undertaken first in Dr. Nathalie Josso's Laboratory in Paris then in our own laboratory in Boston. Purification of MIS led to cloning the human gene and production of recombinant human (rhMIS). MIS is a 140 kDa glycoprotein homodimer which is activated by a biosynthetic protease, cleaving MIS into an aminoterminus (110 kDa) and a carboxyterminus (25 kDa). The latter domain is sufficient for biological activities. MIS functions by interacting with two receptors; a type II binds the hormone and at type I that initiates downstream signaling. The MIS type II receptor has been cloned and functionally confirmed as distinct from that of other members of the TGFbeta superfamily. MIS can employ a number of type I receptors (ALK2, ALK3, ALK6) and BMP receptor specific SMADS 1, 5, and 8 in various tissue specific contexts. Cell lines derived from human ovarian, breast, and prostate tumors, and from rodent Leydig cell tumors, which respond to MIS in growth inhibition assays, all express the MIS type II receptor. A variety of signal transduction pathways are associated with the grown inhibition mediated by MIS. For example, breast and prostate cancer cell lines use a MIS-mediated NFkappaB pathway leading to G1 arrest and apoptosis. The ovarian cancer cell lines employ a pathway which enhances p16, modulates the E2Fs, and induces apoptosis. These signal transduction events can establish new rational treatment strategies to complement the growth inhibitory effects mediated by MIS. These combination strategies are being tested in vitro, and where appropriate will be tested in vivo using the highly purified MIS preparations, prior to use in early human clinical trials.
自阿尔弗雷德·约斯特教授报告有关苗勒管抑制物质(MIS)的开创性观察结果以来,已经过去了近60年。他的实验清楚地表明,除睾酮外的一种睾丸产物,即一种苗勒管抑制剂,是导致苗勒管退化的原因。25年后,皮孔博士建立了一种器官培养测定法,为最初对苗勒管抑制物质(也称为抗苗勒管激素(AMH))的生物化学和生物学研究铺平了道路,这些研究首先在巴黎的娜塔莉·乔索博士实验室进行,然后在我们位于波士顿的实验室开展。MIS的纯化导致了人类基因的克隆和重组人(rhMIS)的产生。MIS是一种140 kDa的糖蛋白同型二聚体,它被一种生物合成蛋白酶激活,将MIS切割成一个氨基末端(110 kDa)和一个羧基末端(25 kDa)。后一个结构域足以产生生物学活性。MIS通过与两种受体相互作用发挥功能;II型受体结合激素,I型受体启动下游信号传导。MIS II型受体已被克隆,并在功能上被确认为与转化生长因子β超家族的其他成员不同。MIS可以在各种组织特异性环境中使用多种I型受体(ALK2、ALK3、ALK6)和骨形态发生蛋白受体特异性SMAD 1、5和8。源自人卵巢、乳腺和前列腺肿瘤以及啮齿动物睾丸间质细胞瘤的细胞系,在生长抑制试验中对MIS有反应,均表达MIS II型受体。多种信号转导途径与MIS介导的生长抑制有关。例如,乳腺癌和前列腺癌细胞系使用MIS介导的NFκB途径导致G1期停滞和凋亡。卵巢癌细胞系采用一种增强p16、调节E2F并诱导凋亡的途径。这些信号转导事件可以建立新的合理治疗策略,以补充MIS介导的生长抑制作用。这些联合策略正在体外进行测试,并在适当时将使用高度纯化的MIS制剂在体内进行测试,然后再用于早期人类临床试验。