Suppr超能文献

组氨酸脱羧酶基因敲除小鼠表现出非强化情景性物体记忆缺陷、负强化水迷宫表现改善以及新纹状体和腹侧纹状体多巴胺周转率增加。

Histidine-decarboxylase knockout mice show deficient nonreinforced episodic object memory, improved negatively reinforced water-maze performance, and increased neo- and ventro-striatal dopamine turnover.

作者信息

Dere Ekrem, De Souza-Silva Maria A, Topic Bianca, Spieler Richard E, Haas Helmut L, Huston Joseph P

机构信息

Institute of Physiological Psychology, University of Düsseldorf, D-40225 Düsseldorf, Germany.

出版信息

Learn Mem. 2003 Nov-Dec;10(6):510-9. doi: 10.1101/lm.67603.

Abstract

The brain's histaminergic system has been implicated in hippocampal synaptic plasticity, learning, and memory, as well as brain reward and reinforcement. Our past pharmacological and lesion studies indicated that the brain's histamine system exerts inhibitory effects on the brain's reinforcement respective reward system reciprocal to mesolimbic dopamine systems, thereby modulating learning and memory performance. Given the close functional relationship between brain reinforcement and memory processes, the total disruption of brain histamine synthesis via genetic disruption of its synthesizing enzyme, histidine decarboxylase (HDC), in the mouse might have differential effects on learning dependent on the task-inherent reinforcement contingencies. Here, we investigated the effects of an HDC gene disruption in the mouse in a nonreinforced object exploration task and a negatively reinforced water-maze task as well as on neo- and ventro-striatal dopamine systems known to be involved in brain reward and reinforcement. Histidine decarboxylase knockout (HDC-KO) mice had higher dihydrophenylacetic acid concentrations and a higher dihydrophenylacetic acid/dopamine ratio in the neostriatum. In the ventral striatum, dihydrophenylacetic acid/dopamine and 3-methoxytyramine/dopamine ratios were higher in HDC-KO mice. Furthermore, the HDC-KO mice showed improved water-maze performance during both hidden and cued platform tasks, but deficient object discrimination based on temporal relationships. Our data imply that disruption of brain histamine synthesis can have both memory promoting and suppressive effects via distinct and independent mechanisms and further indicate that these opposed effects are related to the task-inherent reinforcement contingencies.

摘要

大脑的组胺能系统与海马体突触可塑性、学习和记忆以及大脑奖赏与强化有关。我们过去的药理学和损伤研究表明,大脑组胺系统对大脑的强化(分别对应奖赏系统)发挥抑制作用,这与中脑边缘多巴胺系统相反,从而调节学习和记忆表现。鉴于大脑强化与记忆过程之间存在密切的功能关系,通过基因破坏其合成酶组氨酸脱羧酶(HDC)来完全破坏小鼠大脑中的组胺合成,可能会根据任务固有的强化意外情况对学习产生不同影响。在这里,我们研究了HDC基因破坏对小鼠在非强化物体探索任务和负强化水迷宫任务中的影响,以及对已知参与大脑奖赏和强化的新纹状体和腹侧纹状体多巴胺系统的影响。组氨酸脱羧酶基因敲除(HDC-KO)小鼠的新纹状体中3,4-二羟基苯乙酸(DOPAC)浓度更高,DOPAC/多巴胺比值也更高。在腹侧纹状体中,HDC-KO小鼠的DOPAC/多巴胺和3-甲氧基酪胺/多巴胺比值更高。此外,HDC-KO小鼠在隐藏平台任务和线索平台任务中均表现出改善的水迷宫表现,但基于时间关系的物体辨别能力不足。我们的数据表明,大脑组胺合成的破坏可通过不同且独立的机制产生促进记忆和抑制记忆的作用,并进一步表明这些相反的作用与任务固有的强化意外情况有关。

相似文献

引用本文的文献

4
6
Memory suppressor genes: Modulating acquisition, consolidation, and forgetting.记忆抑制基因:调节获取、巩固和遗忘。
Neuron. 2021 Oct 20;109(20):3211-3227. doi: 10.1016/j.neuron.2021.08.001. Epub 2021 Aug 26.

本文引用的文献

8
Effects of vasopressin on histamine H(1) receptor antagonist-induced spatial memory deficits in rats.
Eur J Pharmacol. 2001 Jul 6;423(2-3):167-70. doi: 10.1016/s0014-2999(01)01080-9.
10
The physiology of brain histamine.脑组胺的生理学
Prog Neurobiol. 2001 Apr;63(6):637-72. doi: 10.1016/s0301-0082(00)00039-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验