Madabushi Srinivasan, Gross Alecia K, Philippi Anne, Meng Elaine C, Wensel Theodore G, Lichtarge Olivier
Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
J Biol Chem. 2004 Feb 27;279(9):8126-32. doi: 10.1074/jbc.M312671200. Epub 2003 Dec 5.
G protein-coupled receptor (GPCR) activation mediated by ligand-induced structural reorganization of its helices is poorly understood. To determine the universal elements of this conformational switch, we used evolutionary tracing (ET) to identify residue positions commonly important in diverse GPCRs. When mapped onto the rhodopsin structure, these trace residues cluster into a network of contacts from the retinal binding site to the G protein-coupling loops. Their roles in a generic transduction mechanism were verified by 211 of 239 published mutations that caused functional defects. When grouped according to the nature of the defects, these residues sub-divided into three striking sub-clusters: a trigger region, where mutations mostly affect ligand binding, a coupling region near the cytoplasmic interface to the G protein, where mutations affect G protein activation, and a linking core in between where mutations cause constitutive activity and other defects. Differential ET analysis of the opsin family revealed an additional set of opsin-specific residues, several of which form part of the retinal binding pocket, and are known to cause functional defects upon mutation. To test the predictive power of ET, we introduced novel mutations in bovine rhodopsin at a globally important position, Leu-79, and at an opsin-specific position, Trp-175. Both were functionally critical, causing constitutive G protein activation of the mutants and rapid loss of regeneration after photobleaching. These results define in GPCRs a canonical signal transduction mechanism where ligand binding induces conformational changes propagated through adjacent trigger, linking core, and coupling regions.
由配体诱导的螺旋结构重组介导的G蛋白偶联受体(GPCR)激活过程,目前仍知之甚少。为了确定这种构象转换的通用元件,我们使用进化追踪(ET)来识别在不同GPCR中普遍重要的残基位置。当映射到视紫红质结构上时,这些追踪残基聚集成一个从视网膜结合位点到G蛋白偶联环的接触网络。239个已发表的导致功能缺陷的突变中,有211个验证了它们在一般转导机制中的作用。根据缺陷的性质进行分组时,这些残基可细分为三个显著的亚簇:一个触发区域,其中的突变主要影响配体结合;一个靠近与G蛋白细胞质界面的偶联区域,其中的突变影响G蛋白激活;以及两者之间的连接核心区域,其中的突变导致组成性活性和其他缺陷。视蛋白家族的差异ET分析揭示了另一组视蛋白特异性残基,其中几个构成了视网膜结合口袋的一部分,并且已知在发生突变时会导致功能缺陷。为了测试ET的预测能力,我们在牛视紫红质的一个全局重要位置Leu-79和一个视蛋白特异性位置Trp-175引入了新的突变。两者在功能上都至关重要,导致突变体的组成性G蛋白激活以及光漂白后再生的快速丧失。这些结果在GPCR中定义了一种典型的信号转导机制,其中配体结合诱导构象变化,通过相邻的触发区域、连接核心区域和偶联区域进行传播。