Svirskis Gytis, Dodla Ramana, Rinzel John
Center for Neural Science, New York University, New York, NY 10003, USA.
Biol Cybern. 2003 Nov;89(5):333-40. doi: 10.1007/s00422-003-0438-2. Epub 2003 Nov 28.
Many auditory neurons possess low-threshold potassium currents ( I(KLT)) that enhance their responsiveness to rapid and coincident inputs. We present recordings from gerbil medial superior olivary (MSO) neurons in vitro and modeling results that illustrate how I(KLT) improves the detection of brief signals, of weak signals in noise, and of the coincidence of signals (as needed for sound localization). We quantify the enhancing effect of I(KLT) on temporal processing with several measures: signal-to-noise ratio (SNR), reverse correlation or spike-triggered averaging of input currents, and interaural time difference (ITD) tuning curves. To characterize how I(KLT), which activates below spike threshold, influences a neuron's voltage rise toward threshold, i.e., how it filters the inputs, we focus first on the response to weak and noisy signals. Cells and models were stimulated with a computer-generated steady barrage of random inputs, mimicking weak synaptic conductance transients (the "noise"), together with a larger but still subthreshold postsynaptic conductance, EPSG (the "signal"). Reduction of I(KLT) decreased the SNR, mainly due to an increase in spontaneous firing (more "false positive"). The spike-triggered reverse correlation indicated that I(KLT) shortened the integration time for spike generation. I(KLT) also heightened the model's timing selectivity for coincidence detection of simulated binaural inputs. Further, ITD tuning is shifted in favor of a slope code rather than a place code by precise and rapid inhibition onto MSO cells (Brand et al. 2002). In several ways, low-threshold outward currents are seen to shape integration of weak and strong signals in auditory neurons.
许多听觉神经元具有低阈值钾电流(I(KLT)),这增强了它们对快速且同时发生的输入的反应能力。我们展示了体外沙鼠内侧上橄榄核(MSO)神经元的记录以及建模结果,这些结果说明了I(KLT)如何改善对短暂信号、噪声中的微弱信号以及信号重合(声音定位所需)的检测。我们用几种测量方法量化了I(KLT)对时间处理的增强作用:信噪比(SNR)、输入电流的反向相关或触发尖峰平均,以及双耳时间差(ITD)调谐曲线。为了描述低于尖峰阈值激活的I(KLT)如何影响神经元向阈值的电压上升,即它如何过滤输入,我们首先关注对微弱和噪声信号的反应。用计算机生成的稳定随机输入脉冲串刺激细胞和模型以模拟微弱的突触电导瞬变(“噪声”),同时施加一个更大但仍低于阈值的突触后电导,即兴奋性突触后电流(EPSG,“信号”)。I(KLT)的减少降低了信噪比,主要是由于自发放电增加(更多“假阳性”)。触发尖峰的反向相关表明I(KLT)缩短了产生尖峰的整合时间。I(KLT)还提高了模型对模拟双耳输入重合检测的时间选择性。此外,通过对MSO细胞的精确快速抑制,ITD调谐偏向于斜率编码而非位置编码(Brand等人,2002年)。在几个方面,可以看到低阈值外向电流塑造了听觉神经元中微弱和强信号的整合。