Suppr超能文献

阈下外向电流增强听觉神经元的时间整合。

Subthreshold outward currents enhance temporal integration in auditory neurons.

作者信息

Svirskis Gytis, Dodla Ramana, Rinzel John

机构信息

Center for Neural Science, New York University, New York, NY 10003, USA.

出版信息

Biol Cybern. 2003 Nov;89(5):333-40. doi: 10.1007/s00422-003-0438-2. Epub 2003 Nov 28.

Abstract

Many auditory neurons possess low-threshold potassium currents ( I(KLT)) that enhance their responsiveness to rapid and coincident inputs. We present recordings from gerbil medial superior olivary (MSO) neurons in vitro and modeling results that illustrate how I(KLT) improves the detection of brief signals, of weak signals in noise, and of the coincidence of signals (as needed for sound localization). We quantify the enhancing effect of I(KLT) on temporal processing with several measures: signal-to-noise ratio (SNR), reverse correlation or spike-triggered averaging of input currents, and interaural time difference (ITD) tuning curves. To characterize how I(KLT), which activates below spike threshold, influences a neuron's voltage rise toward threshold, i.e., how it filters the inputs, we focus first on the response to weak and noisy signals. Cells and models were stimulated with a computer-generated steady barrage of random inputs, mimicking weak synaptic conductance transients (the "noise"), together with a larger but still subthreshold postsynaptic conductance, EPSG (the "signal"). Reduction of I(KLT) decreased the SNR, mainly due to an increase in spontaneous firing (more "false positive"). The spike-triggered reverse correlation indicated that I(KLT) shortened the integration time for spike generation. I(KLT) also heightened the model's timing selectivity for coincidence detection of simulated binaural inputs. Further, ITD tuning is shifted in favor of a slope code rather than a place code by precise and rapid inhibition onto MSO cells (Brand et al. 2002). In several ways, low-threshold outward currents are seen to shape integration of weak and strong signals in auditory neurons.

摘要

许多听觉神经元具有低阈值钾电流(I(KLT)),这增强了它们对快速且同时发生的输入的反应能力。我们展示了体外沙鼠内侧上橄榄核(MSO)神经元的记录以及建模结果,这些结果说明了I(KLT)如何改善对短暂信号、噪声中的微弱信号以及信号重合(声音定位所需)的检测。我们用几种测量方法量化了I(KLT)对时间处理的增强作用:信噪比(SNR)、输入电流的反向相关或触发尖峰平均,以及双耳时间差(ITD)调谐曲线。为了描述低于尖峰阈值激活的I(KLT)如何影响神经元向阈值的电压上升,即它如何过滤输入,我们首先关注对微弱和噪声信号的反应。用计算机生成的稳定随机输入脉冲串刺激细胞和模型以模拟微弱的突触电导瞬变(“噪声”),同时施加一个更大但仍低于阈值的突触后电导,即兴奋性突触后电流(EPSG,“信号”)。I(KLT)的减少降低了信噪比,主要是由于自发放电增加(更多“假阳性”)。触发尖峰的反向相关表明I(KLT)缩短了产生尖峰的整合时间。I(KLT)还提高了模型对模拟双耳输入重合检测的时间选择性。此外,通过对MSO细胞的精确快速抑制,ITD调谐偏向于斜率编码而非位置编码(Brand等人,2002年)。在几个方面,可以看到低阈值外向电流塑造了听觉神经元中微弱和强信号的整合。

相似文献

1
Subthreshold outward currents enhance temporal integration in auditory neurons.
Biol Cybern. 2003 Nov;89(5):333-40. doi: 10.1007/s00422-003-0438-2. Epub 2003 Nov 28.
3
Sodium along with low-threshold potassium currents enhance coincidence detection of subthreshold noisy signals in MSO neurons.
J Neurophysiol. 2004 Jun;91(6):2465-73. doi: 10.1152/jn.00717.2003. Epub 2004 Jan 28.
5
Noise-gated encoding of slow inputs by auditory brain stem neurons with a low-threshold K+ current.
J Neurophysiol. 2009 Dec;102(6):3447-60. doi: 10.1152/jn.00538.2009. Epub 2009 Oct 7.
7
High-Frequency Resonance in the Gerbil Medial Superior Olive.
PLoS Comput Biol. 2016 Nov 10;12(11):e1005166. doi: 10.1371/journal.pcbi.1005166. eCollection 2016 Nov.
8
Arrangement of Excitatory Synaptic Inputs on Dendrites of the Medial Superior Olive.
J Neurosci. 2021 Jan 13;41(2):269-283. doi: 10.1523/JNEUROSCI.1055-20.2020. Epub 2020 Nov 18.
9
Maturation of glycinergic inhibition in the gerbil medial superior olive after hearing onset.
J Physiol. 2005 Oct 15;568(Pt 2):497-512. doi: 10.1113/jphysiol.2005.094763. Epub 2005 Aug 11.
10
Directional hearing by linear summation of binaural inputs at the medial superior olive.
Neuron. 2013 Jun 5;78(5):936-48. doi: 10.1016/j.neuron.2013.04.028.

引用本文的文献

1
Structure and dynamics that specialize neurons for high-frequency coincidence detection in the barn owl nucleus laminaris.
Biol Cybern. 2023 Apr;117(1-2):143-162. doi: 10.1007/s00422-023-00962-z. Epub 2023 May 2.
2
Soma-axon coupling configurations that enhance neuronal coincidence detection.
PLoS Comput Biol. 2019 Mar 4;15(3):e1006476. doi: 10.1371/journal.pcbi.1006476. eCollection 2019 Mar.
3
Function and energy consumption constrain neuronal biophysics in a canonical computation: Coincidence detection.
PLoS Comput Biol. 2018 Dec 6;14(12):e1006612. doi: 10.1371/journal.pcbi.1006612. eCollection 2018 Dec.
4
Signatures of Somatic Inhibition and Dendritic Excitation in Auditory Brainstem Field Potentials.
J Neurosci. 2017 Oct 25;37(43):10451-10467. doi: 10.1523/JNEUROSCI.0600-17.2017. Epub 2017 Sep 25.
5
Amplitude Normalization of Dendritic EPSPs at the Soma of Binaural Coincidence Detector Neurons of the Medial Superior Olive.
J Neurosci. 2017 Mar 22;37(12):3138-3149. doi: 10.1523/JNEUROSCI.3110-16.2017. Epub 2017 Feb 17.
6
Low Somatic Sodium Conductance Enhances Action Potential Precision in Time-Coding Auditory Neurons.
J Neurosci. 2016 Nov 23;36(47):11999-12009. doi: 10.1523/JNEUROSCI.1475-16.2016.
7
Subthreshold resonance properties contribute to the efficient coding of auditory spatial cues.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2339-48. doi: 10.1073/pnas.1316216111. Epub 2014 May 19.
8
Coincidence detection in the medial superior olive: mechanistic implications of an analysis of input spiking patterns.
Front Neural Circuits. 2014 May 1;8:42. doi: 10.3389/fncir.2014.00042. eCollection 2014.
9
Emergence of adaptive computation by single neurons in the developing cortex.
J Neurosci. 2013 Jul 24;33(30):12154-70. doi: 10.1523/JNEUROSCI.3263-12.2013.

本文引用的文献

1
A place theory of sound localization.
J Comp Physiol Psychol. 1948 Feb;41(1):35-9. doi: 10.1037/h0061495.
4
Precise inhibition is essential for microsecond interaural time difference coding.
Nature. 2002 May 30;417(6888):543-7. doi: 10.1038/417543a.
5
A neural code for low-frequency sound localization in mammals.
Nat Neurosci. 2001 Apr;4(4):396-401. doi: 10.1038/86049.
6
The control of rate and timing of spikes in the deep cerebellar nuclei by inhibition.
J Neurosci. 2000 Apr 15;20(8):3006-16. doi: 10.1523/JNEUROSCI.20-08-03006.2000.
7
Detecting and estimating signals in noisy cable structures, II: information theoretical analysis.
Neural Comput. 1999 Nov 15;11(8):1831-73. doi: 10.1162/089976699300015981.
8
Time course and permeation of synaptic AMPA receptors in cochlear nuclear neurons correlate with input.
J Neurosci. 1999 Oct 15;19(20):8721-9. doi: 10.1523/JNEUROSCI.19-20-08721.1999.
9
Synaptic mechanisms for coding timing in auditory neurons.
Annu Rev Physiol. 1999;61:477-96. doi: 10.1146/annurev.physiol.61.1.477.
10
Characterization of outward currents in neurons of the avian nucleus magnocellularis.
J Neurophysiol. 1998 Dec;80(6):2824-35. doi: 10.1152/jn.1998.80.6.2824.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验