Kurz Tino, Leake Alan, Von Zglinicki Thomas, Brunk Ulf T
Division of Pathology II, Medical Faculty, University of Linköping, SE-581 85 Linköping, Sweden.
Biochem J. 2004 Mar 15;378(Pt 3):1039-45. doi: 10.1042/BJ20031029.
Oxidative damage to nuclear DNA is known to involve site-specific Fenton-type chemistry catalysed by redox-active iron or copper in the immediate vicinity of DNA. However, the presence of transition metals in the nucleus has not been shown convincingly. Recently, it was proposed that a major part of the cellular pool of loose iron is confined within the acidic vacuolar compartment [Yu, Persson, Eaton and Brunk (2003) Free Radical Biol. Med. 34, 1243-1252; Persson, Yu, Tirosh, Eaton and Brunk (2003) Free Radical Biol. Med. 34, 1295-1305]. Consequently, rupture of secondary lysosomes, as well as subsequent relocation of labile iron to the nucleus, could be an important intermediary step in the generation of oxidative damage to DNA. To test this concept we employed the potent iron chelator DFO (desferrioxamine) conjugated with starch to form an HMM-DFO (high-molecular-mass DFO complex). The HMM-DFO complex will enter cells only via fluid-phase endocytosis and remain within the acidic vacuolar compartment, thereby chelating redox-active iron exclusively inside the endosomal/lysosomal compartment. Both free DFO and HMM-DFO equally protected lysosomal-membrane integrity against H2O2-induced oxidative disruption. More importantly, both forms of DFO prevented H2O2-induced strand breaks in nuclear DNA, including telomeres. To exclude the possibility that lysosomal hydrolases, rather than iron, caused the observed DNA damage, limited lysosomal rupture was induced using the lysosomotropic detergent O-methyl-serine dodecylamine hydrochloride; subsequently, hardly any DNA damage was found. These observations suggest that rapid oxidative damage to cellular DNA is minimal in the absence of redox-active iron and that oxidant-mediated DNA damage, observed in normal cells, is mainly derived from intralysosomal iron translocated to the nucleus after lysosomal rupture.
已知核DNA的氧化损伤涉及由DNA紧邻区域内的氧化还原活性铁或铜催化的位点特异性芬顿型化学反应。然而,尚未令人信服地证明细胞核中存在过渡金属。最近,有人提出细胞中游离铁池的主要部分局限于酸性液泡区室[Yu, Persson, Eaton和Brunk(2003年)《自由基生物学与医学》34卷,1243 - 1252页;Persson, Yu, Tirosh, Eaton和Brunk(2003年)《自由基生物学与医学》34卷,1295 - 1305页]。因此,次级溶酶体的破裂以及随后不稳定铁向细胞核的重新定位,可能是DNA氧化损伤产生过程中的一个重要中间步骤。为了验证这一概念,我们使用了与淀粉结合形成HMM - DFO(高分子量DFO复合物)的强效铁螯合剂DFO(去铁胺)。HMM - DFO复合物仅通过液相内吞作用进入细胞,并保留在酸性液泡区室中,从而仅在内体/溶酶体区室内螯合氧化还原活性铁。游离DFO和HMM - DFO对溶酶体膜完整性均具有同等的保护作用,可防止H2O2诱导的氧化破坏。更重要的是,两种形式的DFO均能防止H2O2诱导的核DNA链断裂,包括端粒。为了排除是溶酶体水解酶而非铁导致所观察到的DNA损伤的可能性,我们使用溶酶体促透剂盐酸O - 甲基 - 丝氨酸十二烷基胺诱导有限的溶酶体破裂;随后,几乎未发现任何DNA损伤。这些观察结果表明,在没有氧化还原活性铁的情况下,细胞DNA的快速氧化损伤最小,并且在正常细胞中观察到的氧化剂介导的DNA损伤主要源自溶酶体破裂后转运至细胞核的溶酶体内铁。