Suppr超能文献

CTD磷酸酶FCP1对RNA聚合酶II的去磷酸化作用受到磷酸化CTD结合蛋白的抑制。

Dephosphorylation of RNA polymerase II by CTD-phosphatase FCP1 is inhibited by phospho-CTD associating proteins.

作者信息

Palancade Benoît, Marshall Nicholas F, Tremeau-Bravard Alexandre, Bensaude Olivier, Dahmus Michael E, Dubois Marie-Françoise

机构信息

Génétique Moléculaire, UMR 8541 CNRS, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France.

出版信息

J Mol Biol. 2004 Jan 9;335(2):415-24. doi: 10.1016/j.jmb.2003.10.036.

Abstract

Reversible phosphorylation of the repetitive C-terminal domain (CTD) of the largest RNA polymerase (RNAP) II subunit plays a key role in the progression of RNAP through the transcription cycle. The level of CTD phosphorylation is determined by multiple CTD kinases and a CTD phosphatase, FCP1. The phosphorylated CTD binds to a variety of proteins including the cis/trans peptidyl-prolyl isomerase (PPIase) Pin1 and enzymes involved in processing of the primary transcript such as the capping enzyme Hce1 and CA150, a nuclear factor implicated in transcription elongation. Results presented here establish that the dephosphorylation of hyperphosphorylated RNAP II (RNAP IIO) by FCP1 is impaired in the presence of Pin1 or Hce1, whereas CA150 has no influence on FCP1 activity. The inhibition of dephosphorylation is observed with free RNAP IIO generated by different CTD kinases as well as with RNAP IIO engaged in an elongation complex. These findings support the idea that specific phospho-CTD associating proteins can differentially modulate the dephosphorylation of RNAP IIO by steric hindrance and may play an important role in the regulation of gene expression.

摘要

最大的RNA聚合酶(RNAP)II亚基的重复C末端结构域(CTD)的可逆磷酸化在RNAP通过转录周期的过程中起关键作用。CTD磷酸化水平由多种CTD激酶和一种CTD磷酸酶FCP1决定。磷酸化的CTD与多种蛋白质结合,包括顺式/反式肽基脯氨酰异构酶(PPIase)Pin1以及参与初级转录本加工的酶,如加帽酶Hce1和CA150,一种与转录延伸有关的核因子。本文给出的结果表明,在存在Pin1或Hce1的情况下,FCP1对高度磷酸化的RNAP II(RNAP IIO)的去磷酸化作用受损,而CA150对FCP1活性没有影响。在由不同CTD激酶产生的游离RNAP IIO以及参与延伸复合物的RNAP IIO中都观察到了去磷酸化的抑制。这些发现支持了这样一种观点,即特定的磷酸化CTD结合蛋白可以通过空间位阻差异调节RNAP IIO的去磷酸化,并且可能在基因表达调控中发挥重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验