Spallarossa Andrea, Forlani Fabio, Carpen Aristodemo, Armirotti Andrea, Pagani Silvia, Bolognesi Martino, Bordo Domenico
Dipartimento di Fisica-INFM, Centro di Eccellenza per la Ricerca Biomedica, Universita' di Genova; Via Dodecaneso 33, 16146 Genoa, Italy.
J Mol Biol. 2004 Jan 9;335(2):583-93. doi: 10.1016/j.jmb.2003.10.072.
3-Mercaptopyruvate sulfurtransferases (MSTs) catalyze, in vitro, the transfer of a sulfur atom from substrate to cyanide, yielding pyruvate and thiocyanate as products. They display clear structural homology with the protein fold observed in the rhodanese sulfurtransferase family, composed of two structurally related domains. The role of MSTs in vivo, as well as their detailed molecular mechanisms of action have been little investigated. Here, we report the crystal structure of SseA, a MST from Escherichia coli, which is the first MST three-dimensional structure disclosed to date. SseA displays specific structural differences relative to eukaryotic and prokaryotic rhodaneses. In particular, conformational variation of the rhodanese active site loop, hosting the family invariant catalytic Cys residue, may support a new sulfur transfer mechanism involving Cys237 as the nucleophilic species and His66, Arg102 and Asp262 as residues assisting catalysis.
3-巯基丙酮酸硫转移酶(MSTs)在体外催化硫原子从底物转移至氰化物,生成丙酮酸和硫氰酸盐作为产物。它们与在硫代硫酸硫转移酶家族中观察到的蛋白质折叠具有明显的结构同源性,该家族由两个结构相关的结构域组成。MSTs在体内的作用及其详细的分子作用机制鲜有研究。在此,我们报道了来自大肠杆菌的MST——SseA的晶体结构,这是迄今为止公开的首个MST三维结构。SseA相对于真核和原核硫代硫酸硫转移酶显示出特定的结构差异。特别是,硫代硫酸硫转移酶活性位点环的构象变化,该环包含家族不变的催化半胱氨酸残基,可能支持一种新的硫转移机制,其中Cys237作为亲核物种,His66、Arg102和Asp262作为协助催化的残基。