Suppr超能文献

酵母细胞中硫代硫酸盐利用的完整途径。

The Complete Pathway for Thiosulfate Utilization in Saccharomyces cerevisiae.

机构信息

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China

出版信息

Appl Environ Microbiol. 2018 Oct 30;84(22). doi: 10.1128/AEM.01241-18. Print 2018 Nov 15.

Abstract

is known to grow with thiosulfate as a sulfur source, and it produces more ethanol when using thiosulfate than using sulfate. Here, we report how it assimilates thiosulfate. absorbed thiosulfate into the cell through two sulfate permeases, Sul1 and Sul2. Two rhodaneses, Rdl1 and Rdl2, converted thiosulfate to a persulfide and sulfite. The persulfide was reduced by cellular thiols to HS, and sulfite was reduced by sulfite reductase to HS. Cysteine synthase incorporated HS into -acetyl-l-homoserine to produce l-homocysteine, which is the precursor for cysteine and methionine in Several other rhodaneses replaced Rdl1 and Rdl2 for thiosulfate utilization in the yeast. Thus, any organisms with the sulfate assimilation system potentially could use thiosulfate as a sulfur source, since rhodaneses are common in most organisms. The complete pathway of thiosulfate assimilation in baker's yeast is determined. The finding reveals the extensive overlap between sulfate and thiosulfate assimilation. Rhodanese is the only additional enzyme for thiosulfate utilization. The common presence of rhodanese in most organisms, including , , and , suggests that most organisms with the sulfate assimilation system also use thiosulfate. Since it takes less energy to reduce thiosulfate than sulfate for assimilation, thiosulfate has the potential to become a choice of sulfur in optimized media for industrial fermentation.

摘要

已知其能够以硫代硫酸盐作为硫源生长,并且在使用硫代硫酸盐时比使用硫酸盐时产生更多的乙醇。在这里,我们报告其如何同化硫代硫酸盐。通过两种硫酸盐转运蛋白 Sul1 和 Sul2 将硫代硫酸盐吸收到细胞内。两种硫代硫酸盐还原酶 Rdl1 和 Rdl2 将硫代硫酸盐转化为过硫化物和亚硫酸盐。过硫化物被细胞内巯基还原为 HS,亚硫酸盐被亚硫酸盐还原酶还原为 HS。半胱氨酸合酶将 HS 掺入到乙酰-l-高丝氨酸中,产生 l-高半胱氨酸,这是半胱氨酸和蛋氨酸在中的前体。酵母中还有其他几种硫代硫酸盐还原酶取代了 Rdl1 和 Rdl2 用于硫代硫酸盐的利用。因此,具有硫酸盐同化系统的任何生物体都有可能将硫代硫酸盐用作硫源,因为硫代硫酸盐还原酶在大多数生物体中很常见。确定了面包酵母中硫代硫酸盐同化的完整途径。这一发现揭示了硫酸盐和硫代硫酸盐同化之间的广泛重叠。硫代硫酸盐还原酶是硫代硫酸盐利用的唯一额外酶。大多数生物体中普遍存在硫代硫酸盐还原酶,包括细菌、古菌和真核生物,这表明大多数具有硫酸盐同化系统的生物体也利用硫代硫酸盐。由于还原硫代硫酸盐用于同化所需的能量比还原硫酸盐少,因此硫代硫酸盐有可能成为工业发酵优化培养基中硫的选择。

相似文献

1
The Complete Pathway for Thiosulfate Utilization in Saccharomyces cerevisiae.酵母细胞中硫代硫酸盐利用的完整途径。
Appl Environ Microbiol. 2018 Oct 30;84(22). doi: 10.1128/AEM.01241-18. Print 2018 Nov 15.
8
Response to sulfur in Schizosaccharomyces pombe.应对酿酒酵母中的硫。
FEMS Yeast Res. 2021 Jul 24;21(5). doi: 10.1093/femsyr/foab041.

引用本文的文献

1
Diversity and ecology of microbial sulfur metabolism.微生物硫代谢的多样性与生态学
Nat Rev Microbiol. 2025 Feb;23(2):122-140. doi: 10.1038/s41579-024-01104-3. Epub 2024 Oct 17.

本文引用的文献

9
Organization of the human mitochondrial hydrogen sulfide oxidation pathway.人线粒体硫化氢氧化途径的组织。
J Biol Chem. 2014 Nov 7;289(45):30901-10. doi: 10.1074/jbc.M114.602664. Epub 2014 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验