State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.
State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
Appl Environ Microbiol. 2018 Oct 30;84(22). doi: 10.1128/AEM.01241-18. Print 2018 Nov 15.
is known to grow with thiosulfate as a sulfur source, and it produces more ethanol when using thiosulfate than using sulfate. Here, we report how it assimilates thiosulfate. absorbed thiosulfate into the cell through two sulfate permeases, Sul1 and Sul2. Two rhodaneses, Rdl1 and Rdl2, converted thiosulfate to a persulfide and sulfite. The persulfide was reduced by cellular thiols to HS, and sulfite was reduced by sulfite reductase to HS. Cysteine synthase incorporated HS into -acetyl-l-homoserine to produce l-homocysteine, which is the precursor for cysteine and methionine in Several other rhodaneses replaced Rdl1 and Rdl2 for thiosulfate utilization in the yeast. Thus, any organisms with the sulfate assimilation system potentially could use thiosulfate as a sulfur source, since rhodaneses are common in most organisms. The complete pathway of thiosulfate assimilation in baker's yeast is determined. The finding reveals the extensive overlap between sulfate and thiosulfate assimilation. Rhodanese is the only additional enzyme for thiosulfate utilization. The common presence of rhodanese in most organisms, including , , and , suggests that most organisms with the sulfate assimilation system also use thiosulfate. Since it takes less energy to reduce thiosulfate than sulfate for assimilation, thiosulfate has the potential to become a choice of sulfur in optimized media for industrial fermentation.
已知其能够以硫代硫酸盐作为硫源生长,并且在使用硫代硫酸盐时比使用硫酸盐时产生更多的乙醇。在这里,我们报告其如何同化硫代硫酸盐。通过两种硫酸盐转运蛋白 Sul1 和 Sul2 将硫代硫酸盐吸收到细胞内。两种硫代硫酸盐还原酶 Rdl1 和 Rdl2 将硫代硫酸盐转化为过硫化物和亚硫酸盐。过硫化物被细胞内巯基还原为 HS,亚硫酸盐被亚硫酸盐还原酶还原为 HS。半胱氨酸合酶将 HS 掺入到乙酰-l-高丝氨酸中,产生 l-高半胱氨酸,这是半胱氨酸和蛋氨酸在中的前体。酵母中还有其他几种硫代硫酸盐还原酶取代了 Rdl1 和 Rdl2 用于硫代硫酸盐的利用。因此,具有硫酸盐同化系统的任何生物体都有可能将硫代硫酸盐用作硫源,因为硫代硫酸盐还原酶在大多数生物体中很常见。确定了面包酵母中硫代硫酸盐同化的完整途径。这一发现揭示了硫酸盐和硫代硫酸盐同化之间的广泛重叠。硫代硫酸盐还原酶是硫代硫酸盐利用的唯一额外酶。大多数生物体中普遍存在硫代硫酸盐还原酶,包括细菌、古菌和真核生物,这表明大多数具有硫酸盐同化系统的生物体也利用硫代硫酸盐。由于还原硫代硫酸盐用于同化所需的能量比还原硫酸盐少,因此硫代硫酸盐有可能成为工业发酵优化培养基中硫的选择。