Suppr超能文献

Hyperglycemia and hypercapnia differently affect post-ischemic changes in protein kinases and protein phosphorylation in the rat cingulate cortex.

作者信息

Kurihara Junichi, Katsura Ken ichiro, Siesjö Bo K, Wieloch Tadeusz

机构信息

Department of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-0195, Japan.

出版信息

Brain Res. 2004 Jan 9;995(2):218-25. doi: 10.1016/j.brainres.2003.10.005.

Abstract

Hyperglycemia and hypercapnia aggravate intra-ischemic acidosis and subsequent brain damage. However, hyperglycemia causes more extensive post-ischemic damage than hypercapnia, particularly in the cingulate cortex. We investigated the changes in the subcellular distribution of protein kinase Cgamma (PKCgamma) and the Ca2+/calmodulin-dependent protein kinase II (CaMKII), as well as changes in protein tyrosine phosphorylation during and following 10 min normoglycemic, hyperglycemic (plasma glucose approximately 20 mM) and hypercapnic (paCO2) approximately 300 mm Hg) global cerebral ischemia. During reperfusion period, the translocation to cell membranes of PKCgamma, but not CaMKII, was prolonged by intra-ischemic hyperglycemia, while it was only marginally affected by hypercapnia. The tyrosine-phosphorylation of proteins in the synaptosomal membranes, as well as the extracellular signal-regulated kinase (ERK) in the cytosol, markedly increased during reperfusion following hyperglycemic ischemia, but to a lesser degree following hypercapnic ischemia. Our data suggest that PKCgamma, tyrosine kinase and ERK systems are involved in the process of ischemic damage in the cingulate cortex, where hyperglycemia may affect these kinases through an additional mechanism other than exaggerated acidosis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验