Suppr超能文献

控制系统维度:一类服从卡普兰 - 约克猜想的实系统。

Controlling system dimension: a class of real systems that obey the Kaplan-Yorke conjecture.

作者信息

Nichols J M, Todd M D, Seaver M, Trickey S T, Pecora L M, Moniz L

机构信息

US Naval Research Laboratory, Code 5673, Washington, DC 20375, USA.

出版信息

Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15299-303. doi: 10.1073/pnas.2535197100. Epub 2003 Dec 12.

Abstract

The Kaplan-Yorke conjecture suggests a simple relationship between the fractal dimension of a system and its Lyapunov spectrum. This relationship has important consequences in the broad field of nonlinear dynamics where dimension and Lyapunov exponents are frequently used descriptors of system dynamics. We develop an experimental system with controllable dimension by making use of the Kaplan-Yorke conjecture. A rectangular steel plate is driven with the output of a chaotic oscillator. We controlled the Lyapunov exponents of the driving and then computed the fractal dimension of the plate's response. The Kaplan-Yorke relationship predicted the system's dimension extremely well. This finding strongly suggests that other driven linear systems will behave similarly. The ability to control the dimension of a structure's vibrational response is important in the field of vibration-based structural health monitoring for the robust extraction of damage-sensitive features.

摘要

卡普兰 - 约克猜想表明了系统的分形维数与其李雅普诺夫谱之间的一种简单关系。这种关系在非线性动力学的广泛领域中具有重要意义,在该领域中,维数和李雅普诺夫指数经常被用作系统动力学的描述符。我们利用卡普兰 - 约克猜想开发了一个具有可控维数的实验系统。用一个混沌振荡器的输出驱动一块矩形钢板。我们控制驱动的李雅普诺夫指数,然后计算钢板响应的分形维数。卡普兰 - 约克关系对系统的维数预测得非常好。这一发现有力地表明,其他受驱动的线性系统也会有类似的表现。在基于振动的结构健康监测领域,控制结构振动响应维数的能力对于可靠提取损伤敏感特征非常重要。

相似文献

2
Use of chaotic excitation and attractor property analysis in structural health monitoring.混沌激励与吸引子特性分析在结构健康监测中的应用。
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jan;67(1 Pt 2):016209. doi: 10.1103/PhysRevE.67.016209. Epub 2003 Jan 23.
3
Discontinuous attractor dimension at the synchronization transition of time-delayed chaotic systems.时延混沌系统同步转变时的不连续吸引子维度
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042910. doi: 10.1103/PhysRevE.87.042910. Epub 2013 Apr 10.
4
Characterization of nonstationary chaotic systems.非平稳混沌系统的特征描述
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Feb;77(2 Pt 2):026208. doi: 10.1103/PhysRevE.77.026208. Epub 2008 Feb 12.
8
Box-counting dimension without boxes: computing D0 from average expansion rates.无方格的计盒维数:根据平均膨胀率计算D0
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jul;60(1):378-85. doi: 10.1103/physreve.60.378.

本文引用的文献

2
Use of chaotic excitation and attractor property analysis in structural health monitoring.混沌激励与吸引子特性分析在结构健康监测中的应用。
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jan;67(1 Pt 2):016209. doi: 10.1103/PhysRevE.67.016209. Epub 2003 Jan 23.
6
Dimension increase in filtered chaotic signals.滤波混沌信号中的维度增加。
Phys Rev Lett. 1988 Mar 14;60(11):979-982. doi: 10.1103/PhysRevLett.60.979.
7
Lyapunov spectrum of the driven Lorentz gas.受驱洛伦兹气体的李雅普诺夫谱
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Nov;52(5):4817-4826. doi: 10.1103/physreve.52.4817.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验