Nichols J M, Todd M D, Seaver M, Trickey S T, Pecora L M, Moniz L
US Naval Research Laboratory, Code 5673, Washington, DC 20375, USA.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15299-303. doi: 10.1073/pnas.2535197100. Epub 2003 Dec 12.
The Kaplan-Yorke conjecture suggests a simple relationship between the fractal dimension of a system and its Lyapunov spectrum. This relationship has important consequences in the broad field of nonlinear dynamics where dimension and Lyapunov exponents are frequently used descriptors of system dynamics. We develop an experimental system with controllable dimension by making use of the Kaplan-Yorke conjecture. A rectangular steel plate is driven with the output of a chaotic oscillator. We controlled the Lyapunov exponents of the driving and then computed the fractal dimension of the plate's response. The Kaplan-Yorke relationship predicted the system's dimension extremely well. This finding strongly suggests that other driven linear systems will behave similarly. The ability to control the dimension of a structure's vibrational response is important in the field of vibration-based structural health monitoring for the robust extraction of damage-sensitive features.
卡普兰 - 约克猜想表明了系统的分形维数与其李雅普诺夫谱之间的一种简单关系。这种关系在非线性动力学的广泛领域中具有重要意义,在该领域中,维数和李雅普诺夫指数经常被用作系统动力学的描述符。我们利用卡普兰 - 约克猜想开发了一个具有可控维数的实验系统。用一个混沌振荡器的输出驱动一块矩形钢板。我们控制驱动的李雅普诺夫指数,然后计算钢板响应的分形维数。卡普兰 - 约克关系对系统的维数预测得非常好。这一发现有力地表明,其他受驱动的线性系统也会有类似的表现。在基于振动的结构健康监测领域,控制结构振动响应维数的能力对于可靠提取损伤敏感特征非常重要。