Laird Charles D, Pleasant Nicole D, Clark Aaron D, Sneeden Jessica L, Hassan K M Anwarul, Manley Nathan C, Vary Jay C, Morgan Todd, Hansen R Scott, Stöger Reinhard
Department of Biology, Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.
Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):204-9. doi: 10.1073/pnas.2536758100. Epub 2003 Dec 12.
Epigenetic inheritance, the transmission of gene expression states from parent to daughter cells, often involves methylation of DNA. In eukaryotes, cytosine methylation is a frequent component of epigenetic mechanisms. Failure to transmit faithfully a methylated or an unmethylated state of cytosine can lead to altered phenotypes in plants and animals. A central unresolved question in epigenetics concerns the mechanisms by which a locus maintains, or changes, its state of cytosine methylation. We developed "hairpin-bisulfite PCR" to analyze these mechanisms. This method reveals the extent of methylation symmetry between the complementary strands of individual DNA molecules. Using hairpin-bisulfite PCR, we determined the fidelity of methylation transmission in the CpG island of the FMR1 gene in human lymphocytes. For the hypermethylated CpG island of this gene, characteristic of inactive-X alleles, we estimate a maintenance methylation efficiency of approximately 0.96 per site per cell division. For de novo methylation efficiency (E(d)), remarkably different estimates were obtained for the hypermethylated CpG island (E(d) = 0.17), compared with the hypomethylated island on the active-X chromosome (E(d) < 0.01). These results clarify the mechanisms by which the alternative hypomethylated and hypermethylated states of CpG islands are stably maintained through many cell divisions. We also analyzed a region of human L1 transposable elements. These L1 data provide accurate methylation patterns for the complementary strand of each repeat sequence analyzed. Hairpin-bisulfite PCR will be a powerful tool in studying other processes for which genetic or epigenetic information differs on the two complementary strands of DNA.
表观遗传继承,即基因表达状态从亲代细胞传递给子代细胞,通常涉及DNA甲基化。在真核生物中,胞嘧啶甲基化是表观遗传机制的常见组成部分。未能忠实地传递胞嘧啶的甲基化或非甲基化状态会导致动植物的表型改变。表观遗传学中一个尚未解决的核心问题涉及一个位点维持或改变其胞嘧啶甲基化状态的机制。我们开发了“发夹亚硫酸氢盐PCR”来分析这些机制。该方法揭示了单个DNA分子互补链之间甲基化对称的程度。使用发夹亚硫酸氢盐PCR,我们确定了人类淋巴细胞中FMR1基因CpG岛甲基化传递的保真度。对于该基因的高甲基化CpG岛,这是失活X等位基因的特征,我们估计每个位点每次细胞分裂的维持甲基化效率约为0.96。对于从头甲基化效率(E(d)),与活性X染色体上的低甲基化岛(E(d) < 0.01)相比,高甲基化CpG岛得到了显著不同的估计值(E(d) = 0.17)。这些结果阐明了CpG岛的交替低甲基化和高甲基化状态如何通过许多细胞分裂得以稳定维持的机制。我们还分析了人类L1转座元件的一个区域。这些L1数据为所分析的每个重复序列的互补链提供了准确的甲基化模式。发夹亚硫酸氢盐PCR将成为研究其他过程的有力工具,在这些过程中,DNA的两条互补链上的遗传或表观遗传信息有所不同。