Suppr超能文献

基于点阵矩阵对角片段的氨基酸序列快速统计比对。

Fast, statistically based alignment of amino acid sequences on the base of diagonal fragments of DOT-matrices.

作者信息

Streletc V B, Shindyalov I N, Kolchanov N A, Milanesi L

机构信息

Institute of Cytology and Genetics, Siberian Department of Russian Academy of Sciences, Novosibirsk.

出版信息

Comput Appl Biosci. 1992 Dec;8(6):529-34. doi: 10.1093/bioinformatics/8.6.529.

Abstract

We present a new pairwise alignment algorithm that uses iterative statistical analysis of homologous subsequences. Apart from the classical conversion of the DOT-matrix characteristic of the Needleman-Wunsch algorithm (NW), we used only those matrix elements that corresponded to the most non-random subsequence homologies. The most reliable elements of the DOT-matrix are written to the compact competition matrices. The algorithm then searches for alignment on the base of only these matrix elements. Our algorithm has low storage and memory requirements, but provides a reliable alignment for the sequences of weak homology (or, at least for the homology regions). In such cases classical NW algorithms often produce unreliable results on the level of statistical noise due to accumulation of random matchings throughout the aligned sequences.

摘要

我们提出了一种新的成对序列比对算法,该算法使用同源子序列的迭代统计分析。除了对Needleman-Wunsch算法(NW)的点阵矩阵特征进行经典转换外,我们只使用了那些对应于最非随机子序列同源性的矩阵元素。点阵矩阵中最可靠的元素被写入紧凑竞争矩阵。然后,该算法仅基于这些矩阵元素搜索比对。我们的算法具有较低的存储和内存要求,但能为弱同源性序列(或者至少为同源区域)提供可靠的比对。在这种情况下,由于整个比对序列中随机匹配的积累,经典的NW算法在统计噪声水平上常常产生不可靠的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验