Suppr超能文献

检查点激酶CHK1和CHK2通过其调节结构域的差异调节模式。

Differential mode of regulation of the checkpoint kinases CHK1 and CHK2 by their regulatory domains.

作者信息

Ng Chuen-Pei, Lee Hung Chiu, Ho Chung Wai, Arooz Talha, Siu Wai Yi, Lau Anita, Poon Randy Y C

机构信息

Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.

出版信息

J Biol Chem. 2004 Mar 5;279(10):8808-19. doi: 10.1074/jbc.M312215200. Epub 2003 Dec 16.

Abstract

CHK1 and CHK2 are key mediators that link the machineries that monitor DNA integrity to components of the cell cycle engine. Despite the similarity and potential redundancy in their functions, CHK1 and CHK2 are unrelated protein kinases, each having a distinctive regulatory domain. Here we compare how the regulatory domains of human CHK1 and CHK2 modulate the respective kinase activities. Recombinant CHK1 has only low basal activity when expressed in cultured cells. Surprisingly, disruption of the C-terminal regulatory domain activates CHK1 even in the absence of stress. Unlike the full-length protein, C-terminally truncated CHK1 displays autophosphorylation, phosphorylates CDC25C on Ser(216), and delays cell cycle progression. Intriguingly, enzymatic activity decreases when the entire regulatory domain is removed, suggesting that the regulatory domain contains both inhibitory and stimulatory elements. Conversely, the kinase domain suppresses Ser(345) phosphorylation, a major ATM/ATR phosphorylation site in the regulatory domain. In marked contrast, CHK2 expressed in either mammalian cells or in bacteria is already active as a kinase against itself and CDC25C and can delay cell cycle progression. Unlike CHK1, disruption of the regulatory domain of CHK2 abolishes its kinase activity. Moreover, the regulatory domain of CHK2, but not that of CHK1, can oligomerize. Finally, CHK1 but not CHK2 is phosphorylated during the spindle assembly checkpoint, which correlates with the inhibition of the kinase. The mitotic phosphorylation of CHK1 requires the regulatory domain, does not involve Ser(345), and is independent on ATM. Collectively, these data reveal the very different mode of regulation between CHK1 and CHK2.

摘要

CHK1和CHK2是关键的介导因子,它们将监测DNA完整性的机制与细胞周期引擎的组件联系起来。尽管它们在功能上具有相似性和潜在的冗余性,但CHK1和CHK2是不相关的蛋白激酶,各自具有独特的调节结构域。在此,我们比较了人类CHK1和CHK2的调节结构域如何调节各自的激酶活性。重组CHK1在培养细胞中表达时仅具有低基础活性。令人惊讶的是,即使在没有应激的情况下,C末端调节结构域的破坏也会激活CHK1。与全长蛋白不同,C末端截短的CHK1显示出自身磷酸化,在Ser(216)位点磷酸化CDC25C,并延迟细胞周期进程。有趣的是,当整个调节结构域被去除时,酶活性降低,这表明调节结构域同时包含抑制和刺激元件。相反,激酶结构域抑制Ser(345)磷酸化,Ser(345)是调节结构域中的主要ATM/ATR磷酸化位点。与之形成鲜明对比的是,在哺乳动物细胞或细菌中表达的CHK2作为针对自身和CDC25C的激酶已经具有活性,并且可以延迟细胞周期进程。与CHK1不同,CHK2调节结构域的破坏会消除其激酶活性。此外,CHK2的调节结构域而非CHK1的调节结构域可以寡聚化。最后,CHK1而非CHK2在纺锤体组装检查点期间被磷酸化,这与激酶的抑制相关。CHK1的有丝分裂磷酸化需要调节结构域,不涉及Ser(345),并且不依赖于ATM。总体而言,这些数据揭示了CHK1和CHK2之间非常不同的调节模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验