Porter John D, Merriam Anita P, Leahy Patrick, Gong Bendi, Feuerman Jason, Cheng Georgiana, Khanna Sangeeta
Department of Neurology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
Hum Mol Genet. 2004 Feb 1;13(3):257-69. doi: 10.1093/hmg/ddh033. Epub 2003 Dec 17.
Mutations in dystrophin are the proximate cause of Duchenne muscular dystrophy (DMD), but pathogenic mechanisms linking the absence of dystrophin from the sarcolemma to myofiber necrosis are not fully known. The muscular dystrophies also have properties not accounted for by current disease models, including the temporal delay to disease onset, broad species differences in severity, and diversity of skeletal muscle responses. To address the mechanisms underlying the differential targeting of muscular dystrophy, we characterized temporal expression profiles of the diaphragm in dystrophin-deficient (mdx) mice between postnatal days 7 and 112 using oligonucleotide microarrays and contrasted these data with published hindlimb muscle data. Although the diaphragm and hindlimb muscle groups differ in severity of response to dystrophin deficiency, and exhibited substantial divergence in some transcript categories including inflammation and muscle-specific genes, our data show that the general mechanisms operative in muscular dystrophy are highly conserved. The two muscle groups principally differed in expression levels of differentially regulated genes, as opposed to the non-conserved induced/repressed transcripts defining fundamentally distinct mechanisms. We also identified a postnatal divergence of the two wild-type muscle group expression profiles that temporally correlated with the onset and progression of the dystrophic process. These findings support the hypothesis that conserved disease mechanisms interacting with baseline differences in muscle group-specific transcriptomes underlie their differential responses to DMD. We further suggest that muscle group-specific transcriptional profiles contribute toward the muscle targeting and sparing patterns observed for a variety of metabolic and neuromuscular diseases.
肌营养不良蛋白的突变是杜兴氏肌营养不良症(DMD)的直接病因,但将肌膜上缺乏肌营养不良蛋白与肌纤维坏死联系起来的致病机制尚未完全明确。肌营养不良症还具有当前疾病模型无法解释的特性,包括疾病发作的时间延迟、严重程度上广泛的物种差异以及骨骼肌反应的多样性。为了探究肌营养不良症差异靶向的潜在机制,我们使用寡核苷酸微阵列对出生后第7天至112天的肌营养不良蛋白缺陷(mdx)小鼠的膈肌进行了时间表达谱分析,并将这些数据与已发表的后肢肌肉数据进行对比。尽管膈肌和后肢肌肉组对肌营养不良蛋白缺乏的反应严重程度不同,并且在包括炎症和肌肉特异性基因在内的一些转录本类别中表现出显著差异,但我们的数据表明,肌营养不良症中起作用的一般机制高度保守。这两个肌肉组主要在差异调节基因的表达水平上存在差异,而不是在定义根本不同机制的非保守诱导/抑制转录本上存在差异。我们还发现了两种野生型肌肉组表达谱在出生后的差异,这种差异在时间上与营养不良过程的发作和进展相关。这些发现支持了这样一种假设,即保守的疾病机制与肌肉组特异性转录组的基线差异相互作用,是它们对DMD产生不同反应的基础。我们进一步表明,肌肉组特异性转录谱有助于解释在各种代谢和神经肌肉疾病中观察到的肌肉靶向和保留模式。