Suppr超能文献

[微型多导睡眠监测仪作为睡眠呼吸障碍筛查设备的验证]

[Validation of microMESAM as screening device for sleep disordered breathing].

作者信息

Wang Y, Teschler T, Weinreich G, Hess S, Wessendorf T E, Teschler H

机构信息

Ruhrlandklinik, Das Lungenzentrum, Abteilung Pneumologie/Schlaf- und Beatmungsmedizin, Essen.

出版信息

Pneumologie. 2003 Dec;57(12):734-40. doi: 10.1055/s-2003-812423.

Abstract

INTRODUCTION

Polysomnography (PSG) is considered the gold standard in the diagnosis of sleep disordered breathing (SDB). Because of costs and labor-intensity it is, however, performed last in graded diagnostic protocols that often involve respiratory pressure measurements via nasal canula as an alternative sensitive method for SDB detection. MicroMESAM, a newly developed screening device based on this method, allows automated analysis of apnoeas, hypopnoeas and snoring.

AIM AND METHODS

To validate the device, we first compared signal quality of MicroMESAM flow-time curves with those generated by a pneumotachograph. Then, in 50 patients suspected of having obstructive sleep apnoea, we compared MicroMESAM-generated automated analysis with manually scored results of simultaneously collected PSG data.

RESULTS

MicroMESAM-generated flow-time curves correspond with pneumotachograph-generated curves in 95% of respiratory events, resulting in less 4 +/- 2% difference in respective area under the curves. MicroMESAM and PSG generated numbers of apnoeas (r = 0.99) and hypopnoea (r = 0.81), as well as AHI (r = 0.98) correlated highly, displaying mean differences in AHI of 3.8, and in 1.96 sigma interval of + 11.1 to - 3.5/h. Sensitivities and specificities for SDB were 97.3%, respective 46% at SDB-defining AHI of 5, and 100%, respective 87.5%, at SDB-defining AHI of 10.

SUMMARY

MicroMESAM-generated flow-time curves correspond well with pneumotachograph generated curves, producing automated AHIs that are highly sensitive in detecting SDB. MicroMESAM, therefore, is suitable as a screening device for SDB.

摘要

引言

多导睡眠监测(PSG)被认为是诊断睡眠呼吸紊乱(SDB)的金标准。然而,由于成本和劳动强度问题,它在分级诊断方案中是最后进行的,该方案通常涉及通过鼻导管进行呼吸压力测量,作为SDB检测的另一种敏感方法。MicroMESAM是基于这种方法新开发的一种筛查设备,可对呼吸暂停、呼吸不足和打鼾进行自动分析。

目的和方法

为验证该设备,我们首先将MicroMESAM流速-时间曲线的信号质量与呼吸流速仪生成的曲线进行比较。然后,在50名疑似阻塞性睡眠呼吸暂停的患者中,我们将MicroMESAM生成的自动分析结果与同时收集的PSG数据的人工评分结果进行比较。

结果

在95%的呼吸事件中,MicroMESAM生成的流速-时间曲线与呼吸流速仪生成的曲线相符,曲线下各自面积的差异小于4±2%。MicroMESAM和PSG生成的呼吸暂停次数(r = 0.99)、呼吸不足次数(r = 0.81)以及呼吸暂停低通气指数(AHI,r = 0.98)高度相关,AHI的平均差异为3.8,在1.96标准差区间为+ 11.1至- 3.5/小时。在定义SDB的AHI为5时,SDB的敏感性和特异性分别为97.3%和46%;在定义SDB的AHI为10时,敏感性和特异性分别为100%和87.5%。

总结

MicroMESAM生成的流速-时间曲线与呼吸流速仪生成的曲线非常吻合,生成的自动AHI在检测SDB方面具有高度敏感性。因此,MicroMESAM适合作为SDB的筛查设备。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验