Wang Y, Teschler T, Weinreich G, Hess S, Wessendorf T E, Teschler H
Ruhrlandklinik, Das Lungenzentrum, Abteilung Pneumologie/Schlaf- und Beatmungsmedizin, Essen.
Pneumologie. 2003 Dec;57(12):734-40. doi: 10.1055/s-2003-812423.
Polysomnography (PSG) is considered the gold standard in the diagnosis of sleep disordered breathing (SDB). Because of costs and labor-intensity it is, however, performed last in graded diagnostic protocols that often involve respiratory pressure measurements via nasal canula as an alternative sensitive method for SDB detection. MicroMESAM, a newly developed screening device based on this method, allows automated analysis of apnoeas, hypopnoeas and snoring.
To validate the device, we first compared signal quality of MicroMESAM flow-time curves with those generated by a pneumotachograph. Then, in 50 patients suspected of having obstructive sleep apnoea, we compared MicroMESAM-generated automated analysis with manually scored results of simultaneously collected PSG data.
MicroMESAM-generated flow-time curves correspond with pneumotachograph-generated curves in 95% of respiratory events, resulting in less 4 +/- 2% difference in respective area under the curves. MicroMESAM and PSG generated numbers of apnoeas (r = 0.99) and hypopnoea (r = 0.81), as well as AHI (r = 0.98) correlated highly, displaying mean differences in AHI of 3.8, and in 1.96 sigma interval of + 11.1 to - 3.5/h. Sensitivities and specificities for SDB were 97.3%, respective 46% at SDB-defining AHI of 5, and 100%, respective 87.5%, at SDB-defining AHI of 10.
MicroMESAM-generated flow-time curves correspond well with pneumotachograph generated curves, producing automated AHIs that are highly sensitive in detecting SDB. MicroMESAM, therefore, is suitable as a screening device for SDB.
多导睡眠监测(PSG)被认为是诊断睡眠呼吸紊乱(SDB)的金标准。然而,由于成本和劳动强度问题,它在分级诊断方案中是最后进行的,该方案通常涉及通过鼻导管进行呼吸压力测量,作为SDB检测的另一种敏感方法。MicroMESAM是基于这种方法新开发的一种筛查设备,可对呼吸暂停、呼吸不足和打鼾进行自动分析。
为验证该设备,我们首先将MicroMESAM流速-时间曲线的信号质量与呼吸流速仪生成的曲线进行比较。然后,在50名疑似阻塞性睡眠呼吸暂停的患者中,我们将MicroMESAM生成的自动分析结果与同时收集的PSG数据的人工评分结果进行比较。
在95%的呼吸事件中,MicroMESAM生成的流速-时间曲线与呼吸流速仪生成的曲线相符,曲线下各自面积的差异小于4±2%。MicroMESAM和PSG生成的呼吸暂停次数(r = 0.99)、呼吸不足次数(r = 0.81)以及呼吸暂停低通气指数(AHI,r = 0.98)高度相关,AHI的平均差异为3.8,在1.96标准差区间为+ 11.1至- 3.5/小时。在定义SDB的AHI为5时,SDB的敏感性和特异性分别为97.3%和46%;在定义SDB的AHI为10时,敏感性和特异性分别为100%和87.5%。
MicroMESAM生成的流速-时间曲线与呼吸流速仪生成的曲线非常吻合,生成的自动AHI在检测SDB方面具有高度敏感性。因此,MicroMESAM适合作为SDB的筛查设备。