Suppr超能文献

叙利亚仓鼠(金仓鼠)视交叉上核投射的组织学研究:顺行和逆行分析

Organization of suprachiasmatic nucleus projections in Syrian hamsters (Mesocricetus auratus): an anterograde and retrograde analysis.

作者信息

Kriegsfeld Lance J, Leak Rehana K, Yackulic Charles B, LeSauter Joseph, Silver Rae

机构信息

Department of Psychology, Columbia University, New York, New York 10027, USA.

出版信息

J Comp Neurol. 2004 Jan 12;468(3):361-79. doi: 10.1002/cne.10995.

Abstract

Circadian rhythms in physiology and behavior are controlled by pacemaker cells located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The mammalian SCN can be classified into two subdivisions (core and shell) based on the organization of neuroactive substances, inputs, and outputs. Recent studies in our laboratory indicate that these subdivisions are associated with functional specialization in Syrian hamsters. The core region, marked by calbindin-D(28K) (CalB)-containing cells, expresses light-induced, but not rhythmic, clock genes. In the shell compartment, marked by vasopressinergic cells and fibers, clock gene expression is rhythmic. Given these findings, an important question is how photic and rhythmic information are integrated and communicated from each of these regions to effector areas. The present study used localized, intra-SCN iontophoretic injections of the anterograde tracer biotinylated dextran amine (BDA) to investigate intra-SCN connectivity and the neural pathways by which information is communicated from SCN subregions to targets. Intra-SCN connections project from the core to the shell compartment of the SCN, but not from the shell to the CalB region of the SCN. Retrograde tracing experiments were performed using cholera toxin-beta (CTB) to determine more specifically whether SCN efferents originated in the core or shell using neurochemical markers for the rhythmic (vasopressin) and light-induced (CalB) SCN subregions. The combined results from anterograde and retrograde experiments suggest that all SCN targets receive information from both the light-induced and rhythmic regions of the SCN (albeit to varying degrees) and indicate that light and rhythmic information may be integrated both within the SCN and at target effector areas.

摘要

生理和行为中的昼夜节律由位于下丘脑视交叉上核(SCN)的起搏器细胞控制。基于神经活性物质、输入和输出的组织方式,哺乳动物的SCN可分为两个亚区(核心区和壳区)。我们实验室最近的研究表明,这些亚区与叙利亚仓鼠的功能特化有关。以含有钙结合蛋白-D(28K)(CalB)的细胞为特征的核心区域表达光诱导而非节律性的时钟基因。在以加压素能细胞和纤维为特征的壳区,时钟基因表达是有节律的。鉴于这些发现,一个重要的问题是光信息和节律信息如何从这些区域中的每一个整合并传递到效应器区域。本研究使用局部的、SCN内离子电渗法注射顺行示踪剂生物素化葡聚糖胺(BDA)来研究SCN内的连接性以及信息从SCN亚区传递到靶标的神经通路。SCN内的连接从核心区投射到SCN的壳区,但不是从壳区投射到SCN的CalB区域。使用霍乱毒素-β(CTB)进行逆行追踪实验,以更具体地确定SCN传出纤维是否起源于使用SCN节律性(加压素)和光诱导(CalB)亚区神经化学标记的核心区或壳区。顺行和逆行实验的综合结果表明,所有SCN靶标都从SCN的光诱导区和节律区接收信息(尽管程度不同),并表明光信息和节律信息可能在SCN内以及靶标效应器区域整合。

相似文献

2
Targeted microlesions reveal novel organization of the hamster suprachiasmatic nucleus.
J Neurosci. 2004 Mar 10;24(10):2449-57. doi: 10.1523/JNEUROSCI.5323-03.2004.
5
Chicken suprachiasmatic nuclei: I. Efferent and afferent connections.
J Comp Neurol. 2006 May 1;496(1):97-120. doi: 10.1002/cne.20935.
6
Suprachiasmatic pacemaker organization analyzed by viral transynaptic transport.
Brain Res. 1999 Feb 20;819(1-2):23-32. doi: 10.1016/s0006-8993(98)01317-1.
7
Calbindin-D(28K) cells selectively contact intra-SCN neurons.
Neuroscience. 2002;111(3):575-85. doi: 10.1016/s0306-4522(01)00604-2.
8
Topographic organization of suprachiasmatic nucleus projection neurons.
J Comp Neurol. 2001 May 7;433(3):312-34. doi: 10.1002/cne.1142.
9
Targeted mutation of the calbindin D28K gene disrupts circadian rhythmicity and entrainment.
Eur J Neurosci. 2008 Jun;27(11):2907-21. doi: 10.1111/j.1460-9568.2008.06239.x.
10
Projections of the suprachiasmatic nucleus and ventral subparaventricular zone in the Nile grass rat (Arvicanthis niloticus).
Brain Res. 2011 Jan 7;1367:146-61. doi: 10.1016/j.brainres.2010.10.058. Epub 2010 Oct 21.

引用本文的文献

1
Blood flows from the SCN toward the OVLT within a new brain vascular portal pathway.
Sci Adv. 2024 Jun 21;10(25):eadn8350. doi: 10.1126/sciadv.adn8350.
2
Eating Around the Clock: Circadian Rhythms of Eating and Metabolism.
Annu Rev Nutr. 2024 Aug;44(1):25-50. doi: 10.1146/annurev-nutr-062122-014528. Epub 2024 Aug 12.
3
The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward.
J Biol Rhythms. 2024 Apr;39(2):135-165. doi: 10.1177/07487304231225706. Epub 2024 Feb 16.
6
Neuroendocrine mechanisms underlying estrogen positive feedback and the LH surge.
Front Neurosci. 2022 Jul 27;16:953252. doi: 10.3389/fnins.2022.953252. eCollection 2022.
8
Induction of internal circadian desynchrony by misaligning zeitgebers.
Sci Rep. 2022 Jan 31;12(1):1601. doi: 10.1038/s41598-022-05624-x.
9
Orchestration of the circadian clock and its association with Alzheimer's disease: Role of endocannabinoid signaling.
Ageing Res Rev. 2022 Jan;73:101533. doi: 10.1016/j.arr.2021.101533. Epub 2021 Nov 26.
10
Circadian rhythms and pain.
Neurosci Biobehav Rev. 2021 Oct;129:296-306. doi: 10.1016/j.neubiorev.2021.08.004. Epub 2021 Aug 8.

本文引用的文献

1
Gates and oscillators: a network model of the brain clock.
J Biol Rhythms. 2003 Aug;18(4):339-50. doi: 10.1177/0748730403253840.
3
Differential induction and localization of mPer1 and mPer2 during advancing and delaying phase shifts.
Eur J Neurosci. 2002 Oct;16(8):1531-40. doi: 10.1046/j.1460-9568.2002.02224.x.
4
Suprachiasmatic nucleus organization.
Cell Tissue Res. 2002 Jul;309(1):89-98. doi: 10.1007/s00441-002-0575-2. Epub 2002 Jun 8.
5
Calbindin-D(28K) cells selectively contact intra-SCN neurons.
Neuroscience. 2002;111(3):575-85. doi: 10.1016/s0306-4522(01)00604-2.
6
7
A subpopulation of efferent neurons in the mouse suprachiasmatic nucleus is also light responsive.
Neuroreport. 2002 May 7;13(6):857-60. doi: 10.1097/00001756-200205070-00024.
8
Phototransduction by retinal ganglion cells that set the circadian clock.
Science. 2002 Feb 8;295(5557):1070-3. doi: 10.1126/science.1067262.
9
Afferents to the ventrolateral preoptic nucleus.
J Neurosci. 2002 Feb 1;22(3):977-90. doi: 10.1523/JNEUROSCI.22-03-00977.2002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验