Suppr超能文献

湍流中的拉格朗日速度统计:耗散的影响。

Lagrangian velocity statistics in turbulent flows: effects of dissipation.

作者信息

Chevillard L, Roux S G, Levêque E, Mordant N, Pinton J-F, Arneodo A

机构信息

Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, F-69007 Lyon, France.

出版信息

Phys Rev Lett. 2003 Nov 21;91(21):214502. doi: 10.1103/PhysRevLett.91.214502. Epub 2003 Nov 19.

Abstract

We use the multifractal formalism to describe the effects of dissipation on Lagrangian velocity statistics in turbulent flows. We analyze high Reynolds number experiments and direct numerical simulation data. We show that this approach reproduces the shape evolution of velocity increment probability density functions from Gaussian to stretched exponentials as the time lag decreases from integral to dissipative time scales. A quantitative understanding of the departure from scaling exhibited by the magnitude cumulants, early in the inertial range, is obtained with a free parameter function D(h) which plays the role of the singularity spectrum in the asymptotic limit of infinite Reynolds number. We observe that numerical and experimental data are accurately described by a unique quadratic D(h) spectrum which is found to extend from h(min) approximately 0.18 to h(max) approximately 1.

摘要

我们使用多重分形形式来描述湍流中耗散对拉格朗日速度统计的影响。我们分析了高雷诺数实验和直接数值模拟数据。我们表明,随着时间滞后从积分时间尺度减小到耗散时间尺度,这种方法再现了速度增量概率密度函数从高斯分布到拉伸指数分布的形状演变。在惯性范围早期,通过一个自由参数函数D(h)获得了对幅度累积量偏离标度的定量理解,该函数在无限雷诺数的渐近极限中起着奇异谱的作用。我们观察到,数值和实验数据都能被一个独特的二次D(h)谱准确描述,该谱从h(min)约0.18延伸到h(max)约1。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验