Yao Min, Yasutake Yoshiaki, Tanaka Isao
Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.
Acta Crystallogr D Biol Crystallogr. 2004 Jan;60(Pt 1):39-45. doi: 10.1107/s0907444903021188. Epub 2003 Dec 18.
This paper describes the usefulness of flash-cooling in a capillary (FCC) for X-ray diffraction data collection from macromolecular crystals. FCC may be applied when conventional cooling using a cryoloop fails. This technique cools crystals in a capillary instead of in a cryoloop and thus cools crystals more slowly than conventional cooling. Measurements of cooling rates have shown that the time taken to reach the final temperature is two to eight times longer using FCC than using a cryoloop, depending on the volume of cryoprotectant solution around the crystal. Using this cooling technique, the crystal structures of isocitrate dehydrogenase and protein L-isoaspartate O-methyltransferase have been solved at 1.95 and at 2.50 A resolution, respectively. Both crystals could not be cooled by the conventional method using a cryoloop. Moreover, diffraction data from crystals of the hypothetical proteins PH-A and PH-B were also collected successfully using the FCC method. These results show that some crystals, especially larger ones, need to be cooled slowly.
本文描述了毛细管中的快速冷却(FCC)在从大分子晶体收集X射线衍射数据方面的用途。当使用冷冻环的传统冷却方法失败时,可以应用FCC。该技术在毛细管中冷却晶体,而不是在冷冻环中,因此比传统冷却方式冷却晶体的速度更慢。冷却速率的测量表明,达到最终温度所需的时间,使用FCC比使用冷冻环要长两到八倍,这取决于晶体周围冷冻保护剂溶液的体积。使用这种冷却技术,分别在1.95埃和2.50埃分辨率下解析了异柠檬酸脱氢酶和蛋白质L-异天冬氨酸O-甲基转移酶的晶体结构。这两种晶体都不能通过使用冷冻环的传统方法进行冷却。此外,还使用FCC方法成功收集了假设蛋白质PH-A和PH-B晶体的衍射数据。这些结果表明,一些晶体,尤其是较大的晶体,需要缓慢冷却。