King R Bruce
Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA.
Inorg Chem. 2003 Dec 29;42(26):8755-61. doi: 10.1021/ic030210n.
The bismuth polyhedra in ternary transition metal-centered bismuth cluster halides may form discrete molecules or ions, infinite chains, and/or infinite layers. The chemical bonding in many of these diverse structures is related to that in deltahedral boranes exhibiting three-dimensional aromaticity by replacing the multicenter core bond in the boranes with two-center two-electron (2c-2e) bonds from the central transition metal to the nearest neighbor bismuth vertices. Examples of discrete molecules or ions include octahedral MBi(6)(micro-X)(12)(z)()(-) (X = Br, I; M = Rh, Ir, z = 3; M = Ru, z = 4) with exclusively 2c-2e bonds and pentagonal bipyramidal RhBi(7)Br(8) with a 5c-4e bond in the equatorial pentagonal plane indicative of Möbius aromaticity. The compound Ru(3)Bi(24)Br(20) contains a more complicated discrete bismuth cluster ion Ru(2)Bi(17)(micro-Br)(4)(5+), which can be dissected into a RuBi(5) closo octahedron and a RuBi(8) nido capped square antiprism bridged by a Ru(2)Bi(4)(micro-Br)(4) structural unit. In RuBi(4)X(2) (X = Br, I), the same Ru(2)Bi(4)(micro-Br)(4) structural unit bridges Bi(4) squares similar to those found in the known Zintl ion Bi(4)(2)(-) to give infinite chains of Ru(2)Bi(4) octahedra. The electron counts of the RuBi(5), RuBi(8), and Ru(2)Bi(4) polyhedra in these structures follow the Wade-Mingos rules. A different infinite chain structure is constructed from fused RhBi(7/2)Bi bicapped trigonal prisms in Rh(2)Bi(9)Br(3). This Rh(2)Bi(9)Br(3) structure can alternatively be derived from alternating Rh(2/2)Bi(4) octahedra and Rh(2/)(2)Bi(5) pentagonal bipyramids with electron counts obeying the Wade-Mingos rules. Related chemical bonding principles appear to apply to more complicated layer structures such as Pt(3)Bi(13)I(7) containing Kagomé nets of PtBi(8/2) cubes and Ni(4)Bi(12)X(3) containing linked chains of NiBi(6/3)Bi capped trigonal prisms.
在以三元过渡金属为中心的铋簇卤化物中,铋多面体可能形成离散分子或离子、无限链和/或无限层。许多这些不同结构中的化学键与δ面体硼烷中的化学键相关,通过用从中心过渡金属到最近邻铋顶点的双中心双电子(2c - 2e)键取代硼烷中的多中心核心键,δ面体硼烷呈现三维芳香性。离散分子或离子的例子包括八面体MBi₆(μ - X)₁₂(z)⁻(X = Br、I;M = Rh、Ir,z = 3;M = Ru,z = 4),其仅含2c - 2e键,以及五边形双锥RhBi₇Br₈,在赤道五边形平面中有一个5c - 4e键,表明具有莫比乌斯芳香性。化合物Ru₃Bi₂₄Br₂₀包含一个更复杂的离散铋簇离子Ru₂Bi₁₇(μ - Br)₄⁵⁺,它可以分解为一个RuBi₅封闭八面体和一个RuBi₈巢式帽盖方反棱柱,由一个Ru₂Bi₄(μ - Br)₄结构单元桥连。在RuBi₄X₂(X = Br、I)中,相同的Ru₂Bi₄(μ - Br)₄结构单元桥连Bi₄正方形,类似于在已知的津特耳离子Bi₄²⁻中发现的那些,从而形成Ru₂Bi₄八面体的无限链。这些结构中RuBi₅、RuBi₈和Ru₂Bi₄多面体的电子计数遵循韦德 - 明戈斯规则。一种不同的无限链结构由Rh₂Bi₉Br₃中融合的RhBi₇/₂Bi双帽三角棱柱构成。这种Rh₂Bi₉Br₃结构也可以由交替的Rh₂/₂Bi₄八面体和Rh₂/(₂)Bi₅五边形双锥推导而来,其电子计数遵循韦德 - 明戈斯规则。相关的化学键原理似乎适用于更复杂的层状结构,如含有PtBi₈/₂立方体的 Kagomé 网的Pt₃Bi₁₃I₇和含有NiBi₆/₃Bi帽盖三角棱柱的连接链的Ni₄Bi₁₂X₃。