Mednikov Evgueni G, Jewell Matthew C, Dahl Lawrence F
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
J Am Chem Soc. 2007 Sep 19;129(37):11619-30. doi: 10.1021/ja073945q. Epub 2007 Aug 28.
Presented herein are the preparation and crystallographic/microanalytical/magnetic/spectroscopic characterization of the Pt-centered four-shell 165-atom Pd-Pt cluster, (mu(12)-Pt)Pd(164-x)Pt(x)(CO)(72)(PPh(3))(20) (x approximately 7), 1, that replaces the geometrically related capped three-shell icosahedral Pd(145) cluster, Pd(145)(CO)(x)(PEt(3))(30) (x approximately 60), 2, as the largest crystallographically determined discrete transition metal cluster with direct metal-metal bonding. A detailed comparison of their shell-growth patterns gives rise to important stereochemical implications concerning completely unexpected structural dissimilarities as well as similarities and provides new insight concerning possible synthetic approaches for generation of multi-shell metal clusters. 1 was reproducibly prepared in small yields (<10%) from the reaction of Pd(10)(CO)(12)(PPh(3))(6) with Pt(CO)(2)(PPh(3))(2). Its 165-atom metal-core geometry and 20 PPh(3) and 72 CO ligands were established from a low-temperature (100 K) CCD X-ray diffraction study. The well-determined crystal structure is attributed largely to 1 possessing cubic T(h) (2/m3) site symmetry, which is the highest crystallographic subgroup of the noncrystallographic pseudo-icosahedral I(h) (2/m35) symmetry. The "full" four-shell Pd-Pt anatomy of 1 consists of: (a) shell 1 with the centered (mu(12)-Pt) atom encapsulated by the 12-atom icosahedral Pt(x)Pd(12-x) cage, x = 1.2(3); (b) shell 2 with the 42-atom nu(2) icosahedral Pt(x)Pd(42-x) cage, x = 3.5(5); (c) shell 3 with the anti-Mackay 60-atom semi-regular rhombicosidodecahedral Pt(x)Pd(60-x) cage, x = 2.2(6); (d) shell 4 with the 50-atom nu(2) pentagonal dodecahedral Pd(50) cage. The total number of crystallographically estimated Pt atoms, 8 +/- 3, which was obtained from least-squares (Pt(x)/Pd(1-x))-occupancy analysis of the X-ray data that conclusively revealed the central atom to be pure Pt (occupancy factor, x = 1.00(3)), is fortuitously in agreement with that of 7.6(7) found from an X-ray Pt/Pd microanalysis (WDS spectrometer) on three crystals of 1. Our utilization of this site-occupancy (Pt(x)Pd(1-x))-analysis for shells 1-3 originated from the microanalytical results; otherwise, the presumed metal-core composition would have been (mu(12)-Pt)Pd(164). [Alternatively, the (mu(12)-Pt)M(164) core-geometry of 1 may be viewed as a pseudo-Ih Pt-centered six-shell successive nu(1) polyhedral system, each with radially equivalent vertex atoms: Pt@M(12)(icosahedron)@M(30)(icosidodecahedron)@M(12)(icosahedron)@M(60)(rhombicosidodecahedron)@M(30)(icosidodecahedron)@M(20)(pentagonal dodecahedron)]. Completely surprising structural dissimilarities between 1 and 2 are: (1) to date 1 is only reproducibly isolated as a heterometallic Pd-Pt cluster with a central Pt instead of Pd atom; (2) the 50 atoms comprising the outer fourth nu(2) pentagonal dodecahedral shell in 1 are less than the 60 atoms of the inner third shell in 1, in contradistinction to shell-by-shell growth processes in all other known shell-based structures; (3) the 10 fewer PR3 ligands in 1 necessitate larger bulky PPh(3) ligands to protect the Pd-Pt core-geometry; (4) the 72 CO ligands consist of six bridging COs within each of the 12 pentagons in shell 4 that are coordinated to intershell metal atoms. SQUID magnetometry measurements showed a single-crystal sample of 1 to be diamagnetic over the entire temperature range of 10-300 K.
本文介绍了以铂为中心的四壳层165原子钯 - 铂簇合物(μ₁₂ - Pt)Pd₁₆₄₋ₓPtₓ(CO)₇₂(PPh₃)₂₀(x约为7),即1的制备及其晶体学/微分析/磁性/光谱表征。该簇合物取代了几何结构相关的帽状三壳层二十面体Pd₁₄₅簇合物Pd₁₄₅(CO)ₓ(PEt₃)₃₀(x约为60),即2,成为晶体学确定的具有直接金属 - 金属键合的最大离散过渡金属簇合物。对它们的壳层生长模式进行详细比较,得出了关于完全意想不到的结构差异以及相似性的重要立体化学含义,并为生成多壳层金属簇合物的可能合成方法提供了新的见解。通过Pd₁₀(CO)₁₂(PPh₃)₆与Pt(CO)₂(PPh₃)₂反应,以小产率(<10%)可重复制备出1。通过低温(100 K)电荷耦合器件X射线衍射研究确定了其165原子的金属核几何结构以及20个PPh₃和72个CO配体。确定的晶体结构很大程度上归因于1具有立方Tₕ(2/m3)点群对称性,这是非晶体学准二十面体Iₕ(2/m35)对称性的最高晶体学子群。1的“完整”四壳层钯 - 铂结构由以下部分组成:(a)壳层1,中心(μ₁₂ - Pt)原子被12原子的二十面体PtₓPd₁₂₋ₓ笼包围,x = 1.2(3);(b)壳层2,由42原子的μ₂二十面体PtₓPd₄₂₋ₓ笼组成,x = 3.5(5);(c)壳层3,由反麦凯60原子的半正则菱形十二面体PtₓPd₆₀₋ₓ笼组成,x = 2.2(6);(d)壳层4,由50原子的μ₂五角十二面体Pd₅₀笼组成。通过对X射线数据进行最小二乘法(Ptₓ/Pd₁₋ₓ)占有率分析得到晶体学估计的铂原子总数为8 ± 3,该分析最终确定中心原子为纯铂(占有率因子,x = 1.00(3)),这与通过对1的三个晶体进行X射线铂/钯微分析(波长色散光谱仪)得到的7.6(7)结果恰好一致。我们对壳层1 - 3进行这种占有率(PtₓPd₁₋ₓ)分析是源于微分析结果;否则,推测的金属核组成应为(μ₁₂ - Pt)Pd₁₆₄。[或者,1的(μ₁₂ - Pt)M₁₆₄核几何结构可视为一个准Iₕ铂中心的六壳层连续μ₁多面体体系,每个体系具有径向等效的顶点原子:Pt@M₁₂(二十面体)@M₃₀(icosidodecahedron)@M₁₂(二十面体)@M₆₀(菱形十二面体)@M₃₀(icosidodecahedron)@M₂₀(五角十二面体)]。1和2之间完全令人惊讶的结构差异有:(1)迄今为止,1仅作为具有中心铂而非钯原子的异金属钯 - 铂簇合物可重复分离得到;(2)1中构成外层第四μ₂五角十二面体壳层的50个原子比1中内层第三壳层的60个原子少,这与所有其他已知壳层结构的逐层生长过程相反;(3)1中少10个PR₃配体需要更大的大体积PPh₃配体来保护钯 - 铂核几何结构;(4)72个CO配体由壳层4中12个五边形各自内部的6个桥连CO组成,这些CO与壳层间金属原子配位。超导量子干涉仪磁强计测量表明,1的单晶样品在10 - 300 K的整个温度范围内是抗磁性的。