Head Nathan E, Yu Hongwei
Department of Microbiology, Immunology and Molecular Genetics, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia 25704-9330, USA.
Infect Immun. 2004 Jan;72(1):133-44. doi: 10.1128/IAI.72.1.133-144.2004.
Chronic lung infections with Pseudomonas aeruginosa biofilms are associated with refractory and fatal pneumonia in cystic fibrosis (CF). In this study, a group of genomically diverse P. aeruginosa isolates were compared with the reference strain PAO1 to assess the roles of motility, twitching, growth rate, and overproduction of a capsular polysaccharide (alginate) in biofilm formation. In an in vitro biofilm assay system, P. aeruginosa displayed strain-specific biofilm formation that was not solely dependent on these parameters. Compared with non-CF isolates, CF isolates expressed two opposing growth modes: reduced planktonic growth versus efficient biofilm formation. Planktonic cells of CF isolates showed elevated sensitivity to hydrogen peroxide, a reactive oxygen intermediate, and decreased lung colonization in an aerosol infection mouse model. Despite having identical genomic profiles, CF sequential isolates produced different amounts of biofilm. While P. aeruginosa isolates exhibited genomic diversity, the genome size of these isolates was estimated to be 0.4 to 19% (27 to 1,184 kb) larger than that of PAO1. To identify these extra genetic materials, random amplification of polymorphic DNA was coupled with PAO1-subtractive hybridization. Three loci were found within the genomes of two CF isolates encoding one novel homolog involved in retaining a Shigella virulence plasmid (mvpTA) and two divergent genes that function in removing negative supercoiling (topA) and biosynthesis of pyoverdine (PA2402). Together, P. aeruginosa biodiversity could provide one cause for the variation of morbidity and mortality in CF. P. aeruginosa may possess undefined biofilm adhesins that are important to the development of an antibiofilm therapeutic target.
铜绿假单胞菌生物膜引起的慢性肺部感染与囊性纤维化(CF)患者的难治性和致命性肺炎有关。在本研究中,将一组基因组多样的铜绿假单胞菌分离株与参考菌株PAO1进行比较,以评估运动性、颤动、生长速率和荚膜多糖(藻酸盐)过量产生在生物膜形成中的作用。在体外生物膜检测系统中,铜绿假单胞菌表现出菌株特异性的生物膜形成,这并不完全依赖于这些参数。与非CF分离株相比,CF分离株表现出两种相反的生长模式:浮游生长减少与生物膜形成高效。CF分离株的浮游细胞对活性氧中间体过氧化氢的敏感性升高,并且在气溶胶感染小鼠模型中的肺部定殖减少。尽管具有相同的基因组图谱,但CF连续分离株产生的生物膜量不同。虽然铜绿假单胞菌分离株表现出基因组多样性,但这些分离株的基因组大小估计比PAO1大0.4%至19%(27至1184 kb)。为了鉴定这些额外的遗传物质,将多态性DNA的随机扩增与PAO1消减杂交相结合。在两个CF分离株的基因组中发现了三个位点,它们编码一个参与保留志贺氏菌毒力质粒的新同源物(mvpTA)和两个在去除负超螺旋(topA)和绿脓菌素生物合成(PA2402)中起作用的不同基因。总之,铜绿假单胞菌的生物多样性可能是CF发病率和死亡率差异的一个原因。铜绿假单胞菌可能拥有未明确的生物膜粘附素,这对开发抗生物膜治疗靶点很重要。