Suppr超能文献

相干光学神经网络,其通过利用多个光程差在频域中学习所需的相位值。

Coherent optical neural network that learns desirable phase values in the frequency domain by use of multiple optical-path differences.

作者信息

Kawata Sotaro, Hirose Akira

机构信息

Department of Frontier Informatics, Graduate School of Frontier Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

出版信息

Opt Lett. 2003 Dec 15;28(24):2524-6. doi: 10.1364/ol.28.002524.

Abstract

A coherent optical neural network is proposed that has the learning ability to achieve desirable phase values in the frequency domain. It is composed of multiple optical-path differences whose lengths are different from one another. The system learns a phase value at each discrete position in the frequency domain by obeying the complex-valued Hebbian rule. The learning curve also agrees with theoretical evolution.

摘要

提出了一种相干光学神经网络,它具有在频域中实现所需相位值的学习能力。它由多个长度彼此不同的光程差组成。该系统通过遵循复值赫布规则在频域中的每个离散位置学习一个相位值。学习曲线也与理论演变一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验