Sharmila D Jeya Sundara, Veluraja K
Department of Physics, Manonmaniam Sundaranar University, Tirunelveli - 627 012, India.
J Biomol Struct Dyn. 2004 Feb;21(4):591-614. doi: 10.1080/07391102.2004.10506951.
Molecular mechanics and molecular dynamics studies are performed to investigate the conformational preference of cell surface monosialogangliosides (GM3, GM2 and GM1) in aqueous environment. Water mediated hydrogen bonding network plays a significant role in the structural stabilization of GM3, GM2 and GM1. The spatial flexibility of NeuNAc of gangliosides at the binding site of cholera toxin reveals a limited allowed eulerian space of 2.4% with a much less allowed eulerian space (1.4%) for external galactose of GM1. The molecular mechanics of monosialoganglioside-cholera toxin complex reveals that cholera toxin can accommodate the monosialogangliosides in three different modes. Direct and water mediated hydrogen bonding interactions stabilize these binding modes and play an essential role in defining the order of specificity for different monosialogangliosides towards cholera toxin. This study identifies the NeuNAc binding site as a site for design of inhibitors that can restrict the pathogenic activity of cholera toxin.
进行分子力学和分子动力学研究以探究细胞表面单唾液酸神经节苷脂(GM3、GM2和GM1)在水环境中的构象偏好。水介导的氢键网络在GM3、GM2和GM1的结构稳定中起着重要作用。神经节苷脂的N-乙酰神经氨酸(NeuNAc)在霍乱毒素结合位点的空间灵活性显示,其允许的欧拉空间有限,为2.4%,而GM1外部半乳糖的允许欧拉空间更小(1.4%)。单唾液酸神经节苷脂-霍乱毒素复合物的分子力学表明,霍乱毒素可以通过三种不同模式容纳单唾液酸神经节苷脂。直接和水介导的氢键相互作用稳定了这些结合模式,并在确定不同单唾液酸神经节苷脂对霍乱毒素的特异性顺序中起着至关重要的作用。本研究将NeuNAc结合位点确定为可限制霍乱毒素致病活性的抑制剂设计位点。