Ferenczi Emily A, Fraser James A, Chawla Sangeeta, Skepper Jeremy N, Schwiening Christof J, Huang Christopher L-H
Physiological Laboratory, University of Cambridge, Cambridge, UK.
J Physiol. 2004 Mar 1;555(Pt 2):423-38. doi: 10.1113/jphysiol.2003.058545. Epub 2003 Dec 23.
This study investigated membrane transport mechanisms influencing relative changes in cell volume (V) and resting membrane potential (E(m)) following osmotic challenge in amphibian skeletal muscle fibres. It demonstrated a stabilization of E(m) despite cell shrinkage, which was attributable to elevation of intracellular [Cl(-)] above electrochemical equilibrium through Na(+)-Cl(-) and Na(+)-K(+)-2Cl(-) cotransporter action following exposures to extracellular hypertonicity. Fibre volumes (V) determined by confocal microscope x z - scanning of cutaneous pectoris muscle fibres varied linearly with [1/extracellular osmolarity], showing insignificant volume corrections, in fibres studied in Cl(-)-free, normal and Na(+)-free Ringer solutions and in the presence of bumetanide, chlorothiazide and ouabain. The observed volume changes following increases in extracellular tonicity were compared with microelectrode measurements of steady-state resting potentials (E(m)). Fibres in isotonic Cl(-)-free, normal and Na(+)-free Ringer solutions showed similar E(m) values consistent with previously reported permeability ratios P(Na)/P(K)(0.03-0.05) and P(Cl)/P(K) ( approximately 2.0) and intracellular [Na(+)], [K(+)] and [Cl(-)]. Increased extracellular osmolarities produced hyperpolarizing shifts in E(m) in fibres studied in Cl(-)-free Ringer solution consistent with the Goldman-Hodgkin-Katz (GHK) equation. In contrast, fibres exposed to hypertonic Ringer solutions of normal ionic composition showed no such E(m) shifts, suggesting a Cl(-)-dependent stabilization of membrane potential. This stabilization of E(m) was abolished by withdrawing extracellular Na(+) or by the combined presence of the Na(+)-Cl(-) cotransporter (NCC) inhibitor chlorothiazide (10 microM) and the Na(+)-K(+)-2Cl(-) cotransporter (NKCC) inhibitor bumetanide (10 microM), or the Na(+)-K(+)-ATPase inhibitor ouabain (1 or 10 microM) during alterations in extracellular osmolarity. Application of such agents after such increases in tonicity only produced a hyperpolarization after a time delay, as expected for passive Cl(-) equilibration. These findings suggest a model that implicates the NCC and/or NKCC in fluxes that maintain Cl(-) above its electrochemical equilibrium. Such splinting of Cl(-) in combination with the high P(Cl)/P(K) of skeletal muscle stabilizes E(m) despite volume changes produced by extracellular hypertonicity, but at the expense of a cellular capacity for regulatory volume increases (RVIs). In situations where P(Cl)/P(K) is low, the same co-transporters would instead permit RVIs but at the expense of a capacity to stabilize E(m).
本研究调查了影响两栖类骨骼肌纤维在渗透压挑战后细胞体积(V)和静息膜电位(E(m))相对变化的膜转运机制。研究表明,尽管细胞收缩,但E(m)仍保持稳定,这归因于在细胞外高渗环境下,通过钠-氯协同转运体和钠-钾-2氯协同转运体的作用,细胞内[Cl⁻]升高至超过电化学平衡。通过共聚焦显微镜对胸皮肌纤维进行x z扫描测定的纤维体积(V)与[1/细胞外渗透压]呈线性变化,在无氯、正常和无钠的林格氏溶液以及存在布美他尼、氯噻嗪和哇巴因的情况下研究的纤维中,体积校正不显著。将细胞外张力增加后观察到的体积变化与微电极测量的稳态静息电位(E(m))进行比较。等渗无氯、正常和无钠林格氏溶液中的纤维显示出相似的E(m)值,这与先前报道的通透率P(Na)/P(K)(0.03 - 0.05)和P(Cl)/P(K)(约2.0)以及细胞内[Na⁺]、[K⁺]和[Cl⁻]一致。在无氯林格氏溶液中研究的纤维中,细胞外渗透压升高导致E(m)出现超极化偏移,这与戈德曼-霍奇金-卡茨(GHK)方程一致。相比之下,暴露于正常离子组成的高渗林格氏溶液中的纤维未出现此类E(m)偏移,表明膜电位的稳定依赖于Cl⁻。通过去除细胞外Na⁺或在细胞外渗透压改变期间联合使用钠-氯协同转运体(NCC)抑制剂氯噻嗪(10 μM)、钠-钾-2氯协同转运体(NKCC)抑制剂布美他尼(10 μM)或钠-钾-ATP酶抑制剂哇巴因(1或10 μM),可消除E(m)的这种稳定。在张力增加后应用这些药物仅在延迟一段时间后产生超极化,这是被动Cl⁻平衡所预期的。这些发现提示了一种模型,该模型表明NCC和/或NKCC参与了使Cl⁻维持在其电化学平衡之上的通量。尽管细胞外高渗导致体积变化,但Cl⁻的这种钳制与骨骼肌高P(Cl)/P(K)相结合可稳定E(m),但代价是细胞调节性体积增加(RVI)的能力。在P(Cl)/P(K)较低的情况下,相同的协同转运体反而会允许RVI,但代价是稳定E(m)的能力。