Hothorn Torsten, Lausen Berthold, Benner Axel, Radespiel-Tröger Martin
Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-University, Erlangen-Nuremberg, Waldstrasse 6, D-91054 Erlangen, Germany.
Stat Med. 2004 Jan 15;23(1):77-91. doi: 10.1002/sim.1593.
Predicted survival probability functions of censored event free survival are improved by bagging survival trees. We suggest a new method to aggregate survival trees in order to obtain better predictions for breast cancer and lymphoma patients. A set of survival trees based on B bootstrap samples is computed. We define the aggregated Kaplan-Meier curve of a new observation by the Kaplan-Meier curve of all observations identified by the B leaves containing the new observation. The integrated Brier score is used for the evaluation of predictive models. We analyse data of a large trial on node positive breast cancer patients conducted by the German Breast Cancer Study Group and a smaller 'pilot' study on diffuse large B-cell lymphoma, where prognostic factors are derived from microarray expression values. In addition, simulation experiments underline the predictive power of our proposal.
通过对生存树进行装袋,截尾无事件生存的预测生存概率函数得到了改进。我们提出了一种聚合生存树的新方法,以便为乳腺癌和淋巴瘤患者获得更好的预测。计算基于B个自助抽样样本的一组生存树。我们通过包含新观察值的B个叶节点所识别的所有观察值的Kaplan-Meier曲线来定义新观察值的聚合Kaplan-Meier曲线。综合Brier评分用于评估预测模型。我们分析了德国乳腺癌研究组进行的一项关于淋巴结阳性乳腺癌患者的大型试验数据,以及一项关于弥漫性大B细胞淋巴瘤的较小的“试点”研究数据,其中预后因素来自微阵列表达值。此外,模拟实验强调了我们提议的预测能力。