Shen Yufeng, Tolić Nikola, Masselon Christophe, Pasa-Tolić Ljiljana, Camp David G, Hixson Kim K, Zhao Rui, Anderson Gordon A, Smith Richard D
Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
Anal Chem. 2004 Jan 1;76(1):144-54. doi: 10.1021/ac030096q.
Ultrasensitive nanoscale proteomics approaches for characterizing proteins from complex proteomic samples of <50 ng of total mass are described. Protein identifications from 0.5 pg of whole proteome extracts were enabled by ultrahigh sensitivity (<75 zmol for individual proteins) achieved using high-efficiency (peak capacities of approximately 10(3)) 15-microm-i.d. capillary liquid chromatography separations (i.e., using nanoLC, approximately 20 nL/min mobile-phase flow rate at the optimal linear velocity of approximately 0.2 cm/s) coupled on-line with a micro-solid-phase sample extraction and a nanoscale electrospray ionization interface to a 11.4-T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (MS). Proteome measurement coverage improved as sample size was increased from as little as 0.5 pg of sample. It was found that a 2.5-ng sample provided 14% coverage of all annotated open reading frames for the microorganism Deinococcus radiodurans, consistent with previous results for a specific culture condition. The estimated detection dynamic range for detected proteins was 10(5)-10(6). An improved accurate mass and LC elution time two-dimensional data analysis methodology, used to both speed and increase the confidence of peptide/protein identifications, enabled identification of 872 proteins/run from a single 3-h nanoLC/FTICR MS analysis. The low-zeptomole-level sensitivity provides a basis for extending proteomics studies to smaller cell populations and potentially to a single mammalian cell. Application with ion trap MS/MS instrumentation allowed protein identification from 50 pg (total mass) of proteomic samples (i.e., approximately 100 times larger than FTICR MS), corresponding to a sensitivity of approximately 7 amol for individual proteins. Compared with single-stage FTICR measurements, ion trap MS/MS provided a much lower proteome measurement coverage and dynamic range for a given analysis time and sample quantity.
本文描述了用于表征总质量小于50 ng的复杂蛋白质组样品中蛋白质的超灵敏纳米级蛋白质组学方法。通过使用高效(峰容量约为10³)内径15微米的毛细管液相色谱分离(即使用纳升液相色谱,在约0.2 cm/s的最佳线性速度下,流动相流速约为20 nL/min),结合微固相样品萃取和纳米级电喷雾电离接口,与11.4 T傅里叶变换离子回旋共振(FTICR)质谱仪(MS)在线联用,实现了从0.5 pg全蛋白质组提取物中鉴定蛋白质,单个蛋白质的超灵敏度(小于75 zmol)得以实现。随着样品量从低至0.5 pg增加,蛋白质组测量覆盖率提高。研究发现,2.5 ng的样品覆盖了耐辐射球菌所有注释开放阅读框的14%,这与先前特定培养条件下的结果一致。检测到的蛋白质的估计检测动态范围为10⁵ - 10⁶。一种改进的精确质量和液相色谱洗脱时间二维数据分析方法,用于加快肽/蛋白质鉴定速度并提高其可信度,通过单次3小时的纳升液相色谱/FTICR MS分析,每次运行可鉴定872种蛋白质。低zeptomole水平的灵敏度为将蛋白质组学研究扩展到更小的细胞群体甚至单个哺乳动物细胞提供了基础。在离子阱MS/MS仪器上的应用允许从50 pg(总质量)的蛋白质组样品中鉴定蛋白质(即比FTICR MS大约大100倍),单个蛋白质的灵敏度约为7 amol。与单级FTICR测量相比,在给定的分析时间和样品量下,离子阱MS/MS提供的蛋白质组测量覆盖率和动态范围要低得多。