Makowski L
Department of Physics, Boston University, MA 02215.
J Mol Biol. 1992 Dec 5;228(3):885-92. doi: 10.1016/0022-2836(92)90872-h.
Analysis of the results of X-ray diffraction, electron microscopy and s sequence studies of filamentous bacteriophage M13 are used to construct structural models for the minor proteins gp7 and gp9 at the end of the virus assembled first, and a portion of gp6 at the end of the virus that binds host. Comparison of the sequence of the major coat protein, gp8, with those of gp7, gp9 and gp6 indicates that significant portions of these three proteins have sequences similar to that of gp8. Assuming that sequence similarity is indicative of structural similarity, gp7, gp9 and portions of gp6 are modeled based on what is known about the structure of gp8. These molecular models are analyzed to predict the packing of the minor proteins with the terminal gp8 proteins (the last gp8 proteins at either end of the helix). This analysis indicates that the gp8 proteins integrated into the virus first may have a structure distinct from those in the body of the virus particle. The gp8 proteins at the end assembled last appear to have a conformation very similar to that of the integral coat proteins. These models place specific constraints on models for the process of viral assembly.