Fujino Tomofumi, Sato Yoji, Une Mizuho, Kanayasu-Toyoda Toshie, Yamaguchi Teruhide, Shudo Koichi, Inoue Kazuhide, Nishimaki-Mogami Tomoko
National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, 158-8501 Tokyo, Japan.
J Steroid Biochem Mol Biol. 2003 Dec;87(4-5):247-52. doi: 10.1016/j.jsbmb.2003.09.008.
Ligand binding to nuclear receptors leads to a conformational change that increases the affinity of the receptors to coactivator proteins. We have developed a ligand sensor assay for farnesoid X receptor (FXR) in which the receptor-coactivator interaction can be directly monitored using surface plasmon resonance biosensor technology. A 25-mer peptide from coactivator SRC1 containing the LXXLL nuclear receptor interaction motif was immobilized on the surface of a BIAcore sensor chip. Injection of the FXR ligand binding domain (FXRLBD) with or without the most potent natural ligand, chenodeoxycholic acid (CDCA), over the surface of the chip resulted in a ligand- and LXXLL motif-dependent interaction. Kinetic analysis revealed that CDCA and its conjugates decreased the equilibrium dissociation constant (K(d)) by 8-11-fold, indicating an increased affinity. Using this technique, we found that a synthetic bile acid sulfonate, 3alpha,7alpha-dihydroxy-5beta-cholane-24-sulfonate, which was inactive in a FXR response element-driven luciferase assay using CV-1 cells, caused the most potent interaction, comparable to the reaction produced by CDCA. This method provides a rapid and reliable in vitro ligand assay for FXR. This kinetic analysis-featured technique may be applicable to mechanistic studies.
配体与核受体结合会导致构象变化,从而增加受体与共激活蛋白的亲和力。我们开发了一种用于法尼醇X受体(FXR)的配体传感器检测方法,其中可以使用表面等离子体共振生物传感器技术直接监测受体 - 共激活蛋白的相互作用。来自共激活蛋白SRC1的含有LXXLL核受体相互作用基序的25聚体肽被固定在BIAcore传感器芯片的表面。在芯片表面注入有或没有最强效天然配体鹅去氧胆酸(CDCA)的FXR配体结合域(FXRLBD),会导致依赖于配体和LXXLL基序的相互作用。动力学分析表明,CDCA及其共轭物使平衡解离常数(K(d))降低了8 - 11倍,表明亲和力增加。使用该技术,我们发现一种合成胆汁酸磺酸盐,3α,7α - 二羟基 - 5β - 胆烷 - 24 - 磺酸盐,在使用CV - 1细胞的FXR反应元件驱动的荧光素酶检测中无活性,但却引起了最强效的相互作用,与CDCA产生的反应相当。该方法为FXR提供了一种快速可靠的体外配体检测方法。这种具有动力学分析特点的技术可能适用于机理研究。