Suppr超能文献

大鼠肝脏和肾脏无细胞体系中从亚硒酸钠合成二甲基硒化物的过程。

Biosynthesis of dimethyl selenide from sodium selenite in rat liver and kidney cell-free systems.

作者信息

Hsieh H S, Ganther H E

出版信息

Biochim Biophys Acta. 1977 Mar 29;497(1):205-17. doi: 10.1016/0304-4165(77)90153-2.

Abstract

A pathway for the synthesis of dimethyl selenide from sodium selenite was studied in rat liver and kidney fractions under anaerobic conditions in the presence of GSH, a NADPH-generating system, and S-adenosylmethionine. Chromatography of liver or kidney soluble fraction on Sephadex G-75 yielded a Fraction C (30,000 molecular weight) which synthesized dimethyl selenide, but at a low rate. Addition of proteins eluting at the void volume (Fraction A) to Fraction C restored full activity. Fractionation of Fraction A on DEAE-cellulose revealed that its ability to stimulate Fraction C was associated with two fractions, one containing glutathione reductase and the other a NADPH-dependent disulfide reductase. It was concluded that Fraction C contains a methyltransferase acting on small amounts of hydrogen selenide produced non-enzymically by the reaction of selenite with GSH, and that stimulation by Fraction A results partly from the NADPH-linked formation of hydrogen selenide catalyzed by glutathione reductase present in Fraction A. Washed liver microsomal fraction incubated with selenite plus 20 mM GSH also synthesized dimethyl selenide, but addition of soluble fraction stimulated activity. A synergistic effect was obtained when liver soluble fraction was added to microsomal fraction in the presence of a physiological level of GSH (2 mM), whereas at 20 mM GSH the effect was merely additive. The microsomal component of the liver system was labile, had maximal activity around pH 7.5, and was exceedingly sensitive to NaAsO2 (93% inhibition by 10(-6) M arsenite in the presence of a 20,000-fold excess of GSH). The microsomal activity apparently results from a Se-methyltransferase, possibly a dithiol protein, that methylates hydrogen selenide produced enzymically by the soluble fraction or non-enzymically when a sufficiently high concentration of GSH is used.

摘要

在厌氧条件下,于大鼠肝脏和肾脏匀浆中,研究了在谷胱甘肽(GSH)、一个产生NADPH的系统以及S-腺苷甲硫氨酸存在的情况下,由亚硒酸钠合成二甲基硒的途径。肝脏或肾脏可溶部分在葡聚糖凝胶G-75上进行色谱分离,得到了一个C组分(分子量30,000),它能合成二甲基硒,但速率较低。将在空体积处洗脱的蛋白质(A组分)添加到C组分中可恢复全部活性。A组分在二乙氨基乙基纤维素上进行分级分离显示,其刺激C组分的能力与两个组分相关,一个含有谷胱甘肽还原酶,另一个是NADPH依赖的二硫键还原酶。得出的结论是,C组分含有一种甲基转移酶,作用于亚硒酸盐与GSH反应非酶促产生的少量硒化氢,而A组分的刺激作用部分源于A组分中存在的谷胱甘肽还原酶催化的与NADPH相关的硒化氢形成。用亚硒酸盐加20 mM GSH孵育的洗涤过的肝脏微粒体部分也能合成二甲基硒,但添加可溶部分可刺激活性。当在生理水平的GSH(2 mM)存在下将肝脏可溶部分添加到微粒体部分时可获得协同效应,而在20 mM GSH时该效应只是相加性的。肝脏系统的微粒体成分不稳定,在pH 7.5左右具有最大活性,并且对亚砷酸钠极为敏感(在存在20,000倍过量GSH的情况下,10^(-6) M亚砷酸盐可抑制93%)。微粒体活性显然源于一种硒甲基转移酶,可能是一种二硫醇蛋白,它可将可溶部分酶促产生的或在使用足够高浓度GSH时非酶促产生的硒化氢甲基化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验