Yoshimoto Makoto, Wang Shaoqing, Fukunaga Kimitoshi, Treyer Mike, Walde Peter, Kuboi Ryoichi, Nakao Katsumi
Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, 755-8611 Japan.
Biotechnol Bioeng. 2004 Jan 20;85(2):222-33. doi: 10.1002/bit.10891.
Proteinase K-containing liposomes with highly selective membrane permeability properties were prepared. The selectivity obtained was with respect to the two substrate molecules added to the external aqueous phase of the liposomes: acetyl-L-Ala-Ala-Ala-p-nitroanilide (Ac-AAA-pNA) and succinyl-L-Ala-Ala-Ala-p-nitroanilide (Suc-AAA-pNA). The liposome-forming lipid used was POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and modulation of the membrane permeability was achieved using the detergent cholate. Proteinase K-containing mixed liposomes (PKCL) were prepared by adding cholate to preformed proteinase K-containing POPC liposomes (PKL) at a defined effective cholate/POPC molar ratio in the liposomal bilayer membrane R(e). Proteinase K was kept inside PKCL with a negligible amount of leakage into the bulk aqueous phase at R(e) < or = 0.30. At higher R(e), leakage of proteinase K was pronounced, even under conditions where POPC/cholate mixed liposomes seemed to be still intact (0.30 < R(e) < or = 0.39). At R(e) < or = 0.30, the reactivity of proteinase K in the PKCL measured with the externally added substrate Ac-AAA-pNA increased with increasing R(e), while the reactivity measured with Suc-AAA-pNA remained low, regardless of the R(e) value. This showed that externally added Ac-AAA-pNA molecules permeated the liposomal membrane more easily than Suc-AAA-pNA by modulating the membrane with cholate. Consequently, Ac-AAA-pNA was hydrolyzed in PKCL with considerably higher apparent substrate selectivity in comparison with the cases of proteinase K in PKL and free proteinase K (without liposomal encapsulation). The results obtained clearly demonstrate that the prepared PKCL can be utilized as a kind of nano-scaled bioreactor system which can take up a particular target substrate with high apparent substrate selectively from the external phase of the liposomes. Inside the liposomes, the target substrate is then converted into the corresponding products.
Biotechnol Bioeng. 1998-1-20
Biotechnol Bioeng. 1999-1-5
Colloids Surf B Biointerfaces. 2009-10-1
Bioelectromagnetics. 2007-12
Orig Life Evol Biosph. 2006-4