Rohde G K, Barnett A S, Basser P J, Marenco S, Pierpaoli C
NICHD, National Institutes of Health, Bethesda, Maryland 20892-5772, USA.
Magn Reson Med. 2004 Jan;51(1):103-14. doi: 10.1002/mrm.10677.
Patient motion and image distortion induced by eddy currents cause artifacts in maps of diffusion parameters computed from diffusion-weighted (DW) images. A novel and comprehensive approach to correct for spatial misalignment of DW imaging (DWI) volumes acquired with different strengths and orientations of the diffusion sensitizing gradients is presented. This approach uses a mutual information-based registration technique and a spatial transformation model containing parameters that correct for eddy current-induced image distortion and rigid body motion in three dimensions. All parameters are optimized simultaneously for an accurate and fast solution to the registration problem. The images can also be registered to a normalized template with a single interpolation step without additional computational cost. Following registration, the signal amplitude of each DWI volume is corrected to account for size variations of the object produced by the distortion correction, and the b-matrices are properly recalculated to account for any rotation applied during registration. Both qualitative and quantitative results show that this approach produces a significant improvement of diffusion tensor imaging (DTI) data acquired in the human brain.
由涡流引起的患者运动和图像失真会在从扩散加权(DW)图像计算出的扩散参数图中产生伪影。本文提出了一种新颖且全面的方法,用于校正使用不同强度和方向的扩散敏感梯度采集的DW成像(DWI)体积的空间错位。该方法使用基于互信息的配准技术和一个空间变换模型,该模型包含用于校正涡流引起的图像失真和三维刚体运动的参数。所有参数同时进行优化,以准确快速地解决配准问题。图像还可以通过单个插值步骤配准到归一化模板,而无需额外的计算成本。配准后,校正每个DWI体积的信号幅度,以考虑失真校正产生的物体尺寸变化,并重新计算b矩阵,以考虑配准过程中应用的任何旋转。定性和定量结果均表明,该方法显著改善了在人脑采集的扩散张量成像(DTI)数据。