Suppr超能文献

高 b 值扩散加权图像的运动校正和配准。

Motion correction and registration of high b-value diffusion weighted images.

机构信息

Department of Neurobiology, The George S. Wise Faculty of Life-Sciences, Tel Aviv University, Tel Aviv, Israel.

出版信息

Magn Reson Med. 2012 Jun;67(6):1694-702. doi: 10.1002/mrm.23186. Epub 2011 Dec 19.

Abstract

It has been suggested that, high b-value diffusion weighted MRI improves the sensitivity and specificity of these images to tissue microstructure when compared with "clinical" b-value diffusion weighted MRI (b ≈ 1000 s/mm(2)). However, it suffers from poor signal to noise ratio - leading to longer acquisition times and therefore more motion artifacts. Together with the orientational sensitivity of the diffusion weighted MRI signal, the contrast at different b-values and different gradient directions is significantly different. These features of high b-value diffusion images preclude the ability to perform conventional image-registration-based motion/distortion correction. Here, we suggest a framework based on both experimental data (diffusion tensor MRI) and simulations (using the composite hindered and restricted model of diffusion framework) to correct the motion induced misalignments and artifacts of high b-value diffusion weighted MRI. This approach was evaluated using visual assessment of the registered diffusion weighted MRI and the composite hindered and restricted model of diffusion analysis results, as well as residual analysis to assess the quality of the composite hindered and restricted model of diffusion fitting. Both qualitative and quantitative results demonstrate an improvement in fitting the data to the composite hindered and restricted model of diffusion model following the suggested registration framework, thereby, addressing a long-standing problem and making the correction of motion/distortions in data collected at high b-values feasible for the first time.

摘要

有人提出,与“临床”b 值扩散加权 MRI(b ≈ 1000 s/mm²)相比,高 b 值扩散加权 MRI 提高了这些图像对组织微观结构的灵敏度和特异性。然而,它的信噪比较差,导致采集时间更长,从而产生更多的运动伪影。与扩散加权 MRI 信号的各向异性灵敏度一起,不同 b 值和不同梯度方向的对比度有显著差异。这些高 b 值扩散图像的特征排除了执行基于常规图像配准的运动/失真校正的能力。在这里,我们提出了一个基于实验数据(扩散张量 MRI)和模拟(使用复合受限扩散模型框架)的框架,以校正高 b 值扩散加权 MRI 中的运动引起的不对准和伪影。该方法通过对配准后的扩散加权 MRI 和复合受限扩散模型分析结果进行视觉评估以及残差分析来评估,以评估复合受限扩散模型拟合的质量。定性和定量结果都表明,在建议的注册框架下,对复合受限扩散模型的拟合数据得到了改善,从而解决了一个长期存在的问题,使首次对高 b 值采集的数据进行运动/失真校正成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验