Suppr超能文献

从免疫遗传学到免疫组学:基因与转录本的功能探索

From immunogenetics to immunomics: functional prospecting of genes and transcripts.

作者信息

Schönbach Christian

机构信息

Biomedical Knowledge Discovery Team, Bioinformatics Group, RIKEN Genomic Sciences Center (GSC), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.

出版信息

Novartis Found Symp. 2003;254:177-88; discussion 189-92, 216-22, 250-2.

Abstract

Human and mouse genome and transcriptome projects have expanded the field of 'immunogenetics' beyond the traditional study of the genetics and evolution of MHC, TCR and Ig loci into the new interdisciplinary area of 'immunomics'. Immunomics is the study of the molecular functions associated with all immune-related coding and non-coding mRNA transcripts. To unravel the function, regulation and diversity of the immunome requires that we identify and correctly categorize all immune-related transcripts. The importance of intercalated genes, antisense transcripts and non-coding RNAs and their potential role in regulation of immune development and function are only just starting to be appreciated. To better understand immune function and regulation, transcriptome projects (e.g. Functional Annotation of the Mouse, FANTOM), that focus on sequencing full-length transcripts from multiple tissue sources, ideally should include specific immune cells (e.g. T cell, B cells, macrophages, dendritic cells) at various states of development, in activated and unactivated states and in different disease contexts. Progress in deciphering immune regulatory networks will require the cooperative efforts of immunologists, immunogeneticists, molecular biologists and bioinformaticians. Although primary sequence analysis remains useful for annotation of new transcripts it is less useful for identifying novel functions of known transcripts in a new context (protein interaction network or pathway). The most efficient approach to mine useful information from the vast a priori knowledge contained in biological databases and the scientific literature, is to use a combination of computational and expert-driven knowledge discovery strategies. This paper will illustrate the challenges posed in attempts to functionally infer transcriptional regulation and interaction of immune-related genes from text and sequence-based data sources.

摘要

人类和小鼠基因组及转录组计划已将“免疫遗传学”领域从传统的主要研究MHC、TCR和Ig基因座的遗传学与进化,扩展到了“免疫组学”这一新兴的跨学科领域。免疫组学研究与所有免疫相关的编码和非编码mRNA转录本相关的分子功能。要阐明免疫组的功能、调控及多样性,就需要我们识别并正确分类所有免疫相关转录本。插入基因、反义转录本和非编码RNA的重要性及其在免疫发育和功能调控中的潜在作用才刚刚开始被认识到。为了更好地理解免疫功能和调控,专注于对来自多种组织来源的全长转录本进行测序的转录组计划(如小鼠功能注释计划,FANTOM),理想情况下应包括处于不同发育状态、活化和未活化状态以及不同疾病背景下的特定免疫细胞(如T细胞、B细胞、巨噬细胞、树突状细胞)。解读免疫调控网络的进展将需要免疫学家、免疫遗传学家、分子生物学家和生物信息学家的共同努力。虽然一级序列分析对于新转录本的注释仍然有用,但对于在新背景(蛋白质相互作用网络或途径)中识别已知转录本的新功能则用处较小。从生物数据库和科学文献中包含的大量先验知识中挖掘有用信息的最有效方法,是结合使用计算和专家驱动的知识发现策略。本文将阐述在尝试从基于文本和序列的数据源中功能推断免疫相关基因的转录调控和相互作用时所面临的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验