Suppr超能文献

卡特塞维奇锥束重建公式的另一种推导方法。

An alternative derivation of Katsevich's cone-beam reconstruction formula.

作者信息

Chen Guang-Hong

机构信息

Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53792, USA.

出版信息

Med Phys. 2003 Dec;30(12):3217-26. doi: 10.1118/1.1628413.

Abstract

In this paper an alternative derivation of Katsevich's cone-beam image reconstruction algorithm is presented. The starting point is the classical Tuy's inversion formula. After (i) using the hidden symmetries of the intermediate functions, (ii) handling the redundant data by weighting them, (iii) changing the weighted average into an integral over the source trajectory parameter, and (iv) imposing an additional constraint on the weighting function, a filtered backprojection reconstruction formula from cone beam projections is derived. The following features are emphasized in the present paper: First, the nontangential condition in Tuy's original data sufficiency conditions has been relaxed. Second, a practical regularization scheme to handle the singularity is proposed. Third, the derivation in the cone beam case is in the same fashion as that in the fan-beam case. Our final cone-beam reconstruction formula is the same as the one discovered by Katsevich in his most recent paper. However, the data sufficiency conditions and the regularization scheme of singularities are different. A detailed comparison between these two methods is presented.

摘要

本文给出了卡采维奇锥束图像重建算法的另一种推导方法。其出发点是经典的图伊反演公式。通过(i)利用中间函数的隐藏对称性,(ii)对冗余数据进行加权处理,(iii)将加权平均值转换为源轨迹参数上的积分,以及(iv)对加权函数施加额外约束,推导出了从锥束投影进行滤波反投影重建公式。本文强调了以下特点:第一,图伊原始数据充分性条件中的非切向条件已被放宽。第二,提出了一种处理奇异性的实用正则化方案。第三,锥束情形下的推导方式与扇束情形相同。我们最终的锥束重建公式与卡采维奇在其最新论文中发现的公式相同。然而,数据充分性条件和奇异性的正则化方案有所不同。文中对这两种方法进行了详细比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验