Suppr超能文献

基于张量框架波的低剂量多层螺旋 CT 迭代图像重建算法。

Tensor framelet based iterative image reconstruction algorithm for low-dose multislice helical CT.

机构信息

Department of Liberal Arts, Hongik University, Sejong, Republic of Korea.

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

PLoS One. 2019 Jan 11;14(1):e0210410. doi: 10.1371/journal.pone.0210410. eCollection 2019.

Abstract

In this study, we investigate the feasibility of improving the imaging quality for low-dose multislice helical computed tomography (CT) via iterative reconstruction with tensor framelet (TF) regularization. TF based algorithm is a high-order generalization of isotropic total variation regularization. It is implemented on a GPU platform for a fast parallel algorithm of X-ray forward band backward projections, with the flying focal spot into account. The solution algorithm for image reconstruction is based on the alternating direction method of multipliers or the so-called split Bregman method. The proposed method is validated using the experimental data from a Siemens SOMATOM Definition 64-slice helical CT scanner, in comparison with FDK, the Katsevich and the total variation (TV) algorithm. To test the algorithm performance with low-dose data, ACR and Rando phantoms were scanned with different dosages and the data was equally undersampled with various factors. The proposed method is robust for the low-dose data with 25% undersampling factor. Quantitative metrics have demonstrated that the proposed algorithm achieves superior results over other existing methods.

摘要

在这项研究中,我们通过张量框架(TF)正则化的迭代重建来研究提高低剂量多层螺旋 CT(CT)成像质量的可行性。基于 TF 的算法是各向同性全变分正则化的高阶推广。它在 GPU 平台上实现了 X 射线正向带反向投影的快速并行算法,同时考虑了飞行焦点。图像重建的求解算法基于交替方向乘子法或所谓的分裂布格曼法。该方法使用来自西门子 SOMATOM Definition 64 层螺旋 CT 扫描仪的实验数据进行验证,与 FDK、Katsevich 和全变分(TV)算法进行了比较。为了用低剂量数据测试算法性能,使用不同剂量扫描了 ACR 和 Rando 体模,并以各种因子进行了等间隔欠采样。该方法对 25%欠采样因子的低剂量数据具有鲁棒性。定量指标表明,该算法优于其他现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24ba/6329516/dae97631ade5/pone.0210410.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验