Suppr超能文献

对放射性核素治疗有价值的转移生长模型。

Model of metastatic growth valuable for radionuclide therapy.

作者信息

Bernhardt Peter, Ahlman Håkan, Forssell-Aronsson Eva

机构信息

Department of Radiation Physics, Lundberg Laboratory for Cancer Research, Sahlgrenska University Hospital, Göteborg, Sweden.

出版信息

Med Phys. 2003 Dec;30(12):3227-32. doi: 10.1118/1.1628851.

Abstract

The aim was to make a Monte Carlo simulation approach to estimate the distribution of tumor sizes and to study the curative potential of three candidate radionuclides for radionuclide therapy: the high-energy electron emitter 90Y, the medium-energy electron emitter 177Lu and the low-energy electron emitter 103mRh. A patient with hepatocellular carcinoma with recently published serial CT data on tumor growth in the liver was used. From these data the growth of the primary tumor, and the metastatis formation rate, were estimated. Assuming the same tumor growth of the primary and all metastases and the same metastatis formation rate from both primary and metastases the metastatic size distribution was simulated for various time points. Tumor cure of the metastatic size distribution was simulated for uniform activity distribution of three radionuclides; the high-energy electron emitter 90Y, the mean-energy electron emitter 177Lu and the low-energy electron emitter 103mRh. The simulation of a tumor cure was performed for various time points and tumor-to-normal tissue activity concentrations, TNC. It was demonstrated that it is important to start therapy as early as possible after diagnosis. It was of crucial importance to use an optimal radionuclide for therapy. These simulations demonstrated that 90Y was not suitable for systemic radionuclide therapy, due to the low absorbed fraction of the emitted electrons in small tumors (< 1 mg). If TNC was low 103mRh was slightly better than 177Lu. For high TNC values low-energy electron emitters, e.g., 103mRh was the best choice for tumor cure. However, the short half-life of 103mRh (56 min) might not be optimal for therapy. Therefore, other low-energy electron emitters, or alpha emitters, should be considered for systemic targeted therapy.

摘要

目的是采用蒙特卡罗模拟方法来估计肿瘤大小的分布,并研究三种候选放射性核素用于放射性核素治疗的治愈潜力:高能电子发射体90Y、中能电子发射体177Lu和低能电子发射体103mRh。使用了一名肝细胞癌患者,其近期发表了关于肝脏肿瘤生长的系列CT数据。从这些数据中估计了原发性肿瘤的生长情况以及转移形成率。假设原发性肿瘤和所有转移灶具有相同的肿瘤生长情况,且原发性肿瘤和转移灶的转移形成率相同,模拟了不同时间点的转移瘤大小分布。针对三种放射性核素(高能电子发射体90Y、平均能电子发射体177Lu和低能电子发射体103mRh)的均匀活度分布,模拟了转移瘤大小分布的肿瘤治愈情况。针对不同时间点以及肿瘤与正常组织活度浓度(TNC)进行了肿瘤治愈的模拟。结果表明,在诊断后尽早开始治疗很重要。使用最佳的放射性核素进行治疗至关重要。这些模拟表明,90Y不适合用于全身放射性核素治疗,因为其发射的电子在小肿瘤(<1mg)中的吸收分数较低。如果TNC较低,103mRh略优于177Lu。对于高TNC值,低能电子发射体(如103mRh)是肿瘤治愈的最佳选择。然而,103mRh的半衰期较短(56分钟)可能并非治疗的最佳选择。因此,应考虑其他低能电子发射体或α发射体用于全身靶向治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验