McCullough Louise, Wu Liejun, Haughey Norman, Liang Xibin, Hand Tracey, Wang Qian, Breyer Richard M, Andreasson Katrin
Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
J Neurosci. 2004 Jan 7;24(1):257-68. doi: 10.1523/JNEUROSCI.4485-03.2004.
The cyclooxygenases COX-1 and COX-2 catalyze the first committed step of prostaglandin synthesis from arachidonic acid. Previous studies in rodent stroke models have shown that the inducible COX-2 isoform promotes neuronal injury, and the administration of COX-2 inhibitors reduces infarct volume. We investigated the function of PGE2, a principal prostaglandin product of COX-2 enzymatic activity, in neuronal survival in cerebral ischemia. PGE2 exerts its downstream effects by signaling through a class of four distinct G-protein-coupled EP receptors (for E-prostanoid: EP1, EP2, EP3, and EP4) that have divergent effects on cAMP and phosphoinositol turnover and different anatomical distributions in brain. The EP2 receptor subtype is abundantly expressed in cerebral cortex, striatum, and hippocampus, and is positively coupled to cAMP production. In vitro studies of dispersed neurons and organotypic hippocampal cultures demonstrated that activation of the EP2 receptor was neuroprotective in paradigms of NMDA toxicity and oxygen glucose deprivation. Pharmacologic blockade of EP2 signaling by inhibition of protein kinase A activation reversed this protective effect, suggesting that EP2-mediated neuroprotection is dependent on cAMP signaling. In the middle cerebral artery occlusion-reperfusion model of transient forebrain ischemia, genetic deletion of the EP2 receptor significantly increased cerebral infarction in cerebral cortex and subcortical structures. These studies indicate that activation of the PGE2 EP2 receptor can protect against excitotoxic and anoxic injury in a cAMP-dependent manner. Taken together, these data suggest a novel mechanism of neuroprotection mediated by a dominant PGE2 receptor subtype in brain that may provide a target for therapeutic intervention.
环氧化酶COX-1和COX-2催化花生四烯酸合成前列腺素的第一步关键反应。先前在啮齿动物中风模型中的研究表明,诱导型COX-2同工型会促进神经元损伤,而给予COX-2抑制剂可减小梗死体积。我们研究了COX-2酶活性的主要前列腺素产物PGE2在脑缺血中神经元存活方面的功能。PGE2通过一类四种不同的G蛋白偶联EP受体(前列腺素E受体:EP1、EP2、EP3和EP4)进行信号传导来发挥其下游效应,这些受体对cAMP和磷酸肌醇代谢具有不同影响,且在脑中具有不同的解剖分布。EP2受体亚型在大脑皮层、纹状体和海马中大量表达,并与cAMP生成呈正相关。对分散神经元和海马器官型培养物的体外研究表明,在NMDA毒性和氧糖剥夺模型中,EP2受体的激活具有神经保护作用。通过抑制蛋白激酶A激活对EP2信号进行药理学阻断可逆转这种保护作用,这表明EP2介导的神经保护作用依赖于cAMP信号传导。在短暂性前脑缺血的大脑中动脉闭塞-再灌注模型中,EP2受体的基因缺失显著增加了大脑皮层和皮层下结构的脑梗死。这些研究表明,PGE2 EP2受体的激活可通过依赖cAMP的方式预防兴奋性毒性和缺氧性损伤。综上所述,这些数据提示了脑中一种由主要的PGE2受体亚型介导的神经保护新机制,这可能为治疗干预提供一个靶点。