Díaz Natalia, Field Martin J
Laboratoire de Dynamique Moléculaire, Institut de Biologie Structurale-Jean-Pierre Ebel, CEA/CNRS, 41, rue Jules Horowitz, F-38027 Grenoble Cedex 1, France.
J Am Chem Soc. 2004 Jan 21;126(2):529-42. doi: 10.1021/ja037277u.
To investigate the molecular details of the phosphoryl-transfer mechanism catalyzed by cAMP-dependent protein kinase, we performed quantum mechanical (QM) calculations on a cluster model of the active site and molecular dynamics (MD) simulations of a ternary complex of the protein with Mg(2)ATP and a 20-residue peptide substrate. Overall, our theoretical results confirm the participation of the conserved aspartic acid, Asp(166), as an acid/base catalyst in the reaction mechanism catalyzed by protein kinases. The MD simulation shows that the contact between the nucleophilic serine side chain and the carboxylate group of Asp(166) is short and dynamically stable, whereas the QM study indicates that an Asp(166)-assisted pathway is structurally and energetically feasible and is in agreement with previous experimental results.
为了研究环磷酸腺苷(cAMP)依赖性蛋白激酶催化的磷酰基转移机制的分子细节,我们对活性位点的簇模型进行了量子力学(QM)计算,并对该蛋白与Mg(2)ATP和一个20个残基的肽底物形成的三元复合物进行了分子动力学(MD)模拟。总体而言,我们的理论结果证实了保守的天冬氨酸Asp(166)作为酸/碱催化剂参与蛋白激酶催化的反应机制。MD模拟表明,亲核丝氨酸侧链与Asp(166)的羧基之间的接触短且动态稳定,而QM研究表明,Asp(166)辅助的途径在结构和能量上是可行的,并且与先前的实验结果一致。