Suppr超能文献

含缺失观测值的多元多列相关和多系列相关的估计

Estimation of multivariate polychoric and polyserial correlations with missing observations.

作者信息

Lee S Y, Leung K M

机构信息

Department of Statistics, Chinese University of Hong Kong, Shatin.

出版信息

Br J Math Stat Psychol. 1992 Nov;45 ( Pt 2):225-38. doi: 10.1111/j.2044-8317.1992.tb00989.x.

Abstract

The main purpose of this paper is to investigate various approaches in analysing the multivariate polychoric and polyserial correlation model in the presence of incomplete data. For the general case with missing entries in both continuous and polytomous variables, a pseudo maximum likelihood method, and a partition pseudo maximum likelihood are developed. Iterative procedures based on the Fletcher-Powell algorithm and the Newton-Raphson algorithm are implemented to obtain various solutions. For the special case with missing entries only in the polytomous variables, a full maximum likelihood estimate is obtained with the help of an appropriate one-one onto transformation that significantly simplifies the computational burden. The analogous approaches as in the general case are also investigated. Finally, a simulation study is conducted to compare the performances of the various approaches.

摘要

本文的主要目的是研究在存在缺失数据的情况下分析多元多正态相关和多系列相关模型的各种方法。对于连续变量和多分类变量中都存在缺失值的一般情况,开发了一种伪最大似然法和一种分区伪最大似然法。基于弗莱彻 - 鲍威尔算法和牛顿 - 拉夫森算法的迭代程序被用于获得各种解决方案。对于仅在多分类变量中存在缺失值的特殊情况,借助适当的一一对应变换获得了完全最大似然估计,这显著简化了计算负担。还研究了与一般情况类似的方法。最后,进行了一项模拟研究以比较各种方法的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验