Suppr超能文献

Electro-acupuncture preconditioning abrogates the elevation of c-Fos and c-Jun expression in neonatal hypoxic-ischemic rat brains induced by glibenclamide, an ATP-sensitive potassium channel blocker.

作者信息

Jiang Ke- Wen, Zhao Zheng- Yan, Shui Quan- Xiang, Xia Zhe- Zhi

机构信息

Department of Neurology, Children's Hospital School of Medicine, Zhejiang University, 57 Zhugan Xiang, Hangzhou 310003, China.

出版信息

Brain Res. 2004 Feb 13;998(1):13-9. doi: 10.1016/j.brainres.2003.10.043.

Abstract

This study aimed to clarify the neuroprotective mechanism of electro-acupuncture (EA) preconditioning on hypoxic-ischemic brain injury (HIBI). Using Western blot, the expression of c-fos protein (c-Fos) and c-jun protein (c-Jun) induced by glibenclamide, an ATP-sensitive potassium (K(ATP)) channel blocker was examined from cerebral cortical and hippocampal samples in neonatal hypoxic-ischemic rats, with or without EA preconditioning. EA was performed on Hegu (LI4), a well-known acupoint commonly used in Oriental medicine for the treatment of neuronal injury resulting from hypoxia-ischemia (HI). Preconditioned rats were treated with either diazoxide, a K(ATP) channel opener, glibenclamide, or sterile saline injected into the left lateral ventricle (i.c.v.), with or without EA administration before HI insult. Interestingly, low c-Fos and c-Jun expressions were found both in diazoxide and EA groups, 24 h after HI. Furthermore, significant differences in relative optical density (ROD) were found between glibenclamide and HI control groups (P< or =0.05), as well as between the group administered glibenclamide after EA and the HI control group (P< or =0.05). However, the level of c-Fos and c-Jun expression in the group administered glibenclamide after EA was significantly lower than in the glibenclamide group (P< or =0.05). The present findings indicate that the effectiveness of EA preconditioning against HIBI may be mediated via the opening of K(ATP) channels.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验