Suppr超能文献

Different types of barosensory synaptic inputs to rostral ventrolateral medulla neurons of the rat.

作者信息

Granata Antonio R, Cohen Morton I

机构信息

Department of Psychiatry, New York Medical College, Valhalla, NY 10595, USA.

出版信息

Brain Res. 2004 Feb 13;998(1):36-47. doi: 10.1016/j.brainres.2003.10.055.

Abstract

Neurons situated in the rostral ventrolateral medulla (RVLM) with descending axons to the spinal cord and that are modulated by different baroreceptor inputs are considered the main central generators of vasomotor activity. In the urethane-anesthetized, curarized rat, we recorded intracellular potentials from 14 neurons located in the RVLM and investigated their barosensory properties by analysis of the relation between neuronal membrane potential (MP), including spike potentials, and high-pressure barosensory activity, which was indicated by arterial blood pressure (BLPR). Time-domain (cross-correlations or triggered averaging) and frequency-domain (autospectra and coherences) analysis showed that 7 of 14 neurons had cardiac-cycle-correlated rhythms. EXCITATORY CARDIAC-CYCLE-RELATED MODULATION: One type of barosensitive neuron, with strong cardiac-related activity, was antidromically activated from the spinal cord and received inhibitory inputs from aortic nerve stimulation. These neurons had strong pulse-modulated activity consisting of EPSPs and spike potentials locked to the cardiac cycle and occurring at the end of diastole. INHIBITORY CARDIAC-CYCLE-RELATED MODULATION: Another type of barosensitive neuron showed hyperpolarizations locked to the cardiac cycle that started during late diastole and ended during the systolic period, but which had little relation to spike firing. The hyperpolarizations might be due to either IPSPs or disfacilitation. RESPIRATORY AND CARDIAC MODULATION: Some neurons also showed modulation of synaptic potentials and/or spike firing locked to the oscillation produced by ventilator pressure. It is suggested that the different types of cardiac- and respiratory-related rhythm reflect different functional roles of neurons in baroreceptor regulation of vasomotor activity.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验